THE PLETHYSTIC INVERSE OF THE ODD LIE REPRESENTATIONS

被引:0
|
作者
Sundaram, Sheila [1 ]
机构
[1] Pierrepont Sch, 1 Sylvan Rd North, Westport, CT 06880 USA
关键词
Plethysm; plethystic inverse; free Lie algebra; Schur P-functions; PERMUTATIONS;
D O I
10.1090/proc/15938
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Frobenius characteristic of Lie(n), the representation of the symmetric group S-n afforded by the multilinear part of the free Lie algebra, is known to satisfy many interesting plethystic identities. In this paper we prove a conjecture of Richard Stanley establishing the plethystic inverse of the sum Sigma(n >= 0) Lie(2n+1) of the odd Lie characteristics. We obtain an apparently new plethystic decomposition of the regular representation of S-n in terms of irreducibles indexed by hooks, and the Lie representations. We also determine the plethystic inverse of the alternating sum of the odd Lie characteristics.
引用
收藏
页码:3787 / 3798
页数:12
相关论文
共 50 条
  • [1] Inverse Limits in Representations of a Restricted Lie Algebra
    Yu Feng YAO
    Bin SHU
    Yi Yang LI
    Acta Mathematica Sinica, 2012, 28 (12) : 2463 - 2474
  • [2] Inverse limits in representations of a restricted Lie algebra
    Yao, Yu Feng
    Shu, Bin
    Li, Yi Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (12) : 2463 - 2474
  • [3] Inverse limits in representations of a restricted Lie algebra
    Yu Feng Yao
    Bin Shu
    Yi Yang Li
    Acta Mathematica Sinica, English Series, 2012, 28 : 2463 - 2474
  • [4] Inverse Limits in Representations of a Restricted Lie Algebra
    Yu Feng YAO
    Bin SHU
    Yi Yang LI
    Acta Mathematica Sinica,English Series, 2012, (12) : 2463 - 2474
  • [5] On restricted representations of restricted contact Lie superalgebras of odd type
    Wang, Shujuan
    Liu, Wende
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (04)
  • [6] THE PLETHYSTIC INVERSE OF A FORMAL POWER-SERIES
    YANG, JS
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 413 - 442
  • [7] On Quantizable Odd Lie Bialgebras
    Khoroshkin, Anton
    Merkulov, Sergei
    Willwacher, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (09) : 1199 - 1215
  • [8] On Quantizable Odd Lie Bialgebras
    Anton Khoroshkin
    Sergei Merkulov
    Thomas Willwacher
    Letters in Mathematical Physics, 2016, 106 : 1199 - 1215
  • [9] Representations of Lie algebras
    Vyacheslav Futorny
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 131 - 156
  • [10] ON REPRESENTATIONS OF LIE ALGEBRAS
    HARISHCHANDRA
    ANNALS OF MATHEMATICS, 1949, 50 (04) : 900 - 915