The Frobenius characteristic of Lie(n), the representation of the symmetric group S-n afforded by the multilinear part of the free Lie algebra, is known to satisfy many interesting plethystic identities. In this paper we prove a conjecture of Richard Stanley establishing the plethystic inverse of the sum Sigma(n >= 0) Lie(2n+1) of the odd Lie characteristics. We obtain an apparently new plethystic decomposition of the regular representation of S-n in terms of irreducibles indexed by hooks, and the Lie representations. We also determine the plethystic inverse of the alternating sum of the odd Lie characteristics.
机构:
Harbin Inst Technol, Dept Math, Harbin 150006, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150006, Peoples R China
Wang, Shujuan
Liu, Wende
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Dept Math, Harbin 150006, Peoples R China
Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R ChinaHarbin Inst Technol, Dept Math, Harbin 150006, Peoples R China
机构:
Natl Res Univ Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskay Ulitsa, Moscow 101000, Russia
ITEP, Bolshaya Cheremushkinskaya 25, Moscow 117259, RussiaNatl Res Univ Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskay Ulitsa, Moscow 101000, Russia
Khoroshkin, Anton
Merkulov, Sergei
论文数: 0引用数: 0
h-index: 0
机构:
Luxembourg Univ, Math Res Unit, Grand Duchy Luxembourg, LuxembourgNatl Res Univ Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskay Ulitsa, Moscow 101000, Russia
Merkulov, Sergei
Willwacher, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zurich, Inst Math, Zurich, SwitzerlandNatl Res Univ Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskay Ulitsa, Moscow 101000, Russia