Complex common vector for multimodal biometric recognition

被引:1
|
作者
Wang, Z. F. [1 ]
Han, Q. [1 ]
Li, Q. [1 ]
Niu, X. M. [1 ]
Busch, C. [2 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150006, Peoples R China
[2] Gjovik Univ Coll, Norwegian Informat Secur Lab, Gjovik, Norway
基金
中国国家自然科学基金;
关键词
D O I
10.1049/el.2009.0274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel multimodal biometric recognition algorithm based on a complex common vector (CCV) is proposed. The CCV generalises the common vector method for the complex field to perform feature fusion and classification. Theoretical analysis proves that the CCV could produce a unique common vector for every fusion feature in a given class. The iris and the face are used as two distinct biometric modals to test the algorithm. Experimental results show that the proposed algorithm achieves much better performance than other conventional multimodal biometric algorithms.
引用
收藏
页码:495 / 496
页数:2
相关论文
共 50 条
  • [21] Multimodal biometric recognition using human ear and palmprint
    Hezil, Nabil
    Boukrouche, Abdelhani
    [J]. IET BIOMETRICS, 2017, 6 (05) : 351 - 359
  • [22] Multimodal Biometric Recognition System Using SURF Algorithm
    Gurunathan, V.
    Sathiyapriya, T.
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [23] Hand Vein-based Multimodal Biometric Recognition
    Bharathi, S.
    Sudhakar, R.
    Balas, Valentina E.
    [J]. ACTA POLYTECHNICA HUNGARICA, 2015, 12 (06) : 213 - 229
  • [24] A Multimodal Biometric System Based on Fingerprint and Signature Recognition
    Kocharyan, Davit
    Khachaturyan, Vahe
    Sarukhanyan, Hakob
    [J]. 2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [25] Multimodal Biometric System Based on Autoencoders and Learning Vector Quantization
    Costa-Filho, C. F. F.
    Negreiro, J., V
    Costa, M. G. F.
    [J]. XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1611 - 1617
  • [26] Ensemble recognition model with optimal training for multimodal biometric authentication
    Kumar, K. Pavan
    Prasad, P. E. S. N. Krishna
    Suresh, Y.
    Babu, M. Rajesh
    Kumar, M. Jogendra
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 63497 - 63521
  • [27] Multimodal Biometric Recognition System Using Feature Level Fusion
    Rane, Milind E.
    Deshpande, Prameya P.
    [J]. 2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [28] Multimodal Biometric System Based on Fingerprint Identification and Iris Recognition
    Besbes, Feten
    Trichili, Hanene
    Solaiman, Basel
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 1224 - +
  • [29] Multimodal Biometric Recognition Using Sclera and Fingerprint Based on ANFIS
    Rajasekaran, M. Pallikonda
    Suresh, M.
    Dhanasekaran, U.
    [J]. 2014 INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION TECHNOLOGY (ICRTIT), 2014,
  • [30] Multimodal Biometric System Recognition Using Fuzzy RCE Network
    Pravinthraja, S.
    Umamaheswari, K.
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2016, 6 (03) : 788 - 793