Darboux Transformation for the 3-Dimension Nonlinear Schrodinger Equation

被引:2
|
作者
Gui, Mingxiang [1 ]
Huang, Jing [2 ]
机构
[1] First High Sch Xiangtan, Xiangtan 411100, Peoples R China
[2] South China Univ Technol, Dept Phys, Guangzhou 510640, Guangdong, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2018年 / 10卷 / 03期
关键词
Darboux transformation; transient nonlinear Schrodinger equation; time-varying parameter; SUPERCONTINUUM; GENERATION;
D O I
10.1109/JPHOT.2018.2832655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The transient nonlinear Schrodinger equation (NLSE) is solved with the Darboux transformation. Based on this solution, the longitude and transverse field evolution is presented; the time-varying coefficients (dispersion and nonlinear parameters) of NLSE are determined; the dynamical properties of the photonic crystal fiber-based metamaterials and the turning from loss to gain in photonic crystal fibers are interpreted; the resonance effect is redefined; and the resonance frequency which is a function of field is calculated.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Binary Darboux transformation and new soliton solutions of the focusing nonlocal nonlinear Schrodinger equation
    Xu, Chuanxin
    Xu, Tao
    Meng, Dexin
    Zhang, Tianli
    An, Licong
    Han, Lijun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [22] Darboux transformation and elementary exact solutions of the Schrodinger equation
    Bagrov, VG
    Samsonov, BF
    PRAMANA-JOURNAL OF PHYSICS, 1997, 49 (06): : 563 - 580
  • [23] Binary Darboux transformation and interactions of solitons for a higher-order matrix nonlinear Schrodinger equation
    Guo, Mengyao
    Xie, Xiyang
    RESULTS IN PHYSICS, 2023, 53
  • [24] Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrodinger equation
    Xu, Tao
    Li, Hengji
    Zhang, Hongjun
    Li, Min
    Lan, Sha
    APPLIED MATHEMATICS LETTERS, 2017, 63 : 88 - 94
  • [25] Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation
    Li, Bang-Qing
    Ma, Yu-Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [26] Novel Rogue Waves for a Mixed Coupled Nonlinear Schrodinger Equation on Darboux-Dressing Transformation
    Dong, Min-Jie
    Tian, Li-Xin
    Wei, Jing-Dong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 22 - 34
  • [27] DARBOUX TRANSFORMATION METHOD FOR GIVING SOLITON-SOLUTIONS OF THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION
    CHEN, ZY
    HUANG, NN
    MODERN PHYSICS LETTERS A, 1989, 4 (16) : 1573 - 1579
  • [28] The general mixed nonlinear Schrodinger equation: Darboux transformation, rogue wave solutions, and modulation instability
    Li, Wenbo
    Xue, Chunyan
    Sun, Lili
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [29] Darboux-Backlund transformation and localized excitation on the periodic wave background for the nonlinear Schrodinger equation
    Yang, Yunqing
    Dong, Huanhe
    Chen, Yong
    WAVE MOTION, 2021, 106
  • [30] The Darboux transformation of the Schrodinger equation with an energy-dependent potential
    Lin, Ji
    Li, Yi-Shen
    Qian, Xian-Min
    PHYSICS LETTERS A, 2007, 362 (2-3) : 212 - 214