Bethe-Salpeter solutions with complex coupling constants

被引:3
|
作者
Mainland, GB [1 ]
机构
[1] Ohio State Univ, Dept Phys, Newark, OH 43055 USA
来源
PROGRESS OF THEORETICAL PHYSICS | 2004年 / 111卷 / 06期
关键词
D O I
10.1143/PTP.111.923
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a general, numerical method for solving two-body, bound-state Bethe-Salpeter equations recently developed by the author, a complete set of solutions is obtained, in the ladder approximation, to the Bethe-Salpeter equation describing bound states of two massive scalars bound by the exchange of a third, massive scalar. Solutions with either a complex or real coupling constant and either zero or nonzero angular momentum are calculated and explicitly shown to satisfy the Bethe-Salpeter equation. A knowledge of boundary conditions is a prerequisite for calculating solutions, necessitating the development of a general technique for determining boundary conditions when the binding quanta are massive.
引用
收藏
页码:923 / 942
页数:20
相关论文
共 50 条
  • [41] SOLUTION OF A BETHE-SALPETER EQUATION
    SCHWARTZ, C
    PHYSICAL REVIEW, 1965, 137 (3B): : B717 - &
  • [42] Sketching the Bethe-Salpeter Kernel
    Chang, Lei
    Roberts, Craig D.
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [43] On the Ladder Bethe-Salpeter Equation
    G. V. Efimov
    Few-Body Systems, 2003, 33 : 199 - 217
  • [44] NORMALIZATION OF BETHE-SALPETER AMPLITUDE
    OHNUKI, Y
    WATANABE, K
    NUOVO CIMENTO, 1965, 39 (02): : 772 - +
  • [45] SPECTRUM OF A BETHE-SALPETER EQUATION
    SCARF, FL
    PHYSICAL REVIEW, 1955, 99 (02): : 675 - 675
  • [46] NONSINGULAR BETHE-SALPETER EQUATION
    LEVINE, M
    TJON, J
    WRIGHT, J
    PHYSICAL REVIEW LETTERS, 1966, 16 (21) : 962 - &
  • [47] Bethe-Salpeter amplitudes of Upsilons
    Larsen, Rasmus
    Meinel, Stefan
    Mukherjee, Swagato
    Petreczky, Peter
    PHYSICAL REVIEW D, 2020, 102 (11)
  • [48] Decay constants of heavy vector mesons in relativistic Bethe-Salpeter method
    Wang, GL
    PHYSICS LETTERS B, 2006, 633 (4-5) : 492 - 496
  • [49] Scattering Solutions of Bethe-Salpeter Equation in Minkowski and Euclidean Spaces
    Carbonell, J.
    Karmanov, V. A.
    FEW-BODY SYSTEMS, 2016, 57 (07) : 533 - 539
  • [50] The Bethe-Salpeter equation with fermions
    G. V. Efimov
    Few-Body Systems, 2007, 41 : 157 - 184