Fibers over infinity of Landau-Ginzburg models

被引:0
|
作者
Cheltsov, Ivan [1 ]
Przyjalkowski, Victor [2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Scotland
[2] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
基金
英国工程与自然科学研究理事会;
关键词
AND PHRASES; Fano varieties; Landau-Ginzburg models; log Calabi-Yau compactifications; anticanonical linear systems; MIRROR SYMMETRY; FANO;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We conjecture that the number of components of the fiber over infinity of Landau-Ginzburg model for a smooth Fano variety X equals the dimension of the anticanonical system of X. We ver-ify this conjecture for log Calabi-Yau compactifications of toric Landau-Ginzburg models for smooth Fano threefolds, complete intersections in projective spaces, and some toric varieties.
引用
收藏
页码:673 / 693
页数:21
相关论文
共 50 条
  • [21] Monopoles and Landau-Ginzburg models I
    Wang, Donghao
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (06) : 1617 - 1699
  • [22] Defect perturbations in Landau-Ginzburg models
    Ilka Brunner
    Daniel Roggenkamp
    Sebastiano Rossi
    Journal of High Energy Physics, 2010
  • [23] Hodge numbers of Landau-Ginzburg models
    Harder, Andrew
    ADVANCES IN MATHEMATICS, 2021, 378
  • [24] Curvature constraints in heterotic Landau-Ginzburg models
    Richard S. Garavuso
    Journal of High Energy Physics, 2020
  • [25] A mirror theorem between Landau-Ginzburg models
    Li, Si
    NUCLEAR PHYSICS B, 2015, 898 : 707 - 714
  • [26] VARIANCE OF THE EXPONENTS OF ORBIFOLD LANDAU-GINZBURG MODELS
    Ebeling, Wolfgang
    Takahashi, Atsushi
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (01) : 65 - 79
  • [27] Mirror Symmetry for Nonabelian Landau-Ginzburg Models
    Priddis, Nathan
    Ward, Joseph
    Williams, Matthew M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [28] SELF-DUALITY FOR LANDAU-GINZBURG MODELS
    Callander, Brian
    Gasparim, Elizabeth
    Jenkins, Rollo
    Silva, Lino Marcos
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2014, 35 : 1 - 10
  • [29] LANDAU-GINZBURG MODELS IN REAL MIRROR SYMMETRY
    Walcher, Johannes
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2865 - 2883
  • [30] Rigidity and Defect Actions in Landau-Ginzburg Models
    Nils Carqueville
    Ingo Runkel
    Communications in Mathematical Physics, 2012, 310 : 135 - 179