Growth mechanisms of vapor-liquid-solid grown nanowires: A detailed analysis of irregular nanowire formation

被引:14
|
作者
Koto, Makoto [1 ]
机构
[1] Canon Inc, Corp R&D Headquarters, Ohta ku, Tokyo 1468501, Japan
关键词
Nanostructures; Solidification; Liquid phase epitaxy; Nanomaterials; Semiconducting silicon;
D O I
10.1016/j.jcrysgro.2013.12.042
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Although vapor-liquid-solid (VLS) growth has become a standard method for producing nanowires, the underlying growth mechanisms have not been fully elucidated because VLS growth is affected by thermodynamic and geometrical factors that, to date, have mainly been considered separately. Based on the assumption that the irregular nanowire growth reflects the conditions of the eutectic droplet during nanowire growth, we aimed to elucidate the thermodynamic and geometrical aspects of the growth mechanisms by the measurement and analysis of irregular kinked and curved Si nanowires grown by Au-catalyzed VLS. The results suggest that kinked nanowires may be caused by higher supersaturation, whereas curved nanowires may be caused by lower supersaturation within the eutectic Au-Si droplet. The results of measuring and analyzing irregular nanowires confirmed that both thermodynamic and geometrical effects complexly influence nanowire growth kinetics, particularly the supersaturation of eutectic droplets, and the effects are more pronounced in larger diameter nanowires. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [41] Influence of precursor feeding rate on vapor-liquid-solid nanowire growth
    Yuan, Guangbi
    Liu, Xiaohua
    He, Weidong
    Wang, Dunwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (02): : 399 - 402
  • [42] Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires
    Ambrosini, S.
    Fanetti, M.
    Grillo, V.
    Franciosi, A.
    Rubini, S.
    AIP ADVANCES, 2011, 1 (04):
  • [43] Catalytic growth of nanowires: Vapor-liquid-solid, vapor-solid-solid, solution-liquid-solid and solid-liquid-solid growth
    Kolasinski, Kurt W.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2006, 10 (3-4): : 182 - 191
  • [44] n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires
    Gutsche, Christoph
    Lysov, Andrey
    Regolin, Ingo
    Blekker, Kai
    Prost, Werner
    Tegude, Franz-Josef
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 6
  • [45] Vapor-liquid-solid massive growth of hexagonal indium nitride nanowires
    Liu, Hai-Bin
    Cheng, Guo-Sheng
    Xie, Si-Shen
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (12): : 2094 - 2097
  • [46] Vapor-Liquid-Solid Growth of Nanowires under the Conditions of External Faceting
    Levchenko, Elena V.
    Nebol'sin, Valery A.
    Yuryev, Vladimir A.
    Swaikat, Nada
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (01):
  • [47] Oscillations of Truncation in Vapor-Liquid-Solid Nanowires
    Dubrovskii, Vladimir G.
    Glas, Frank
    CRYSTAL GROWTH & DESIGN, 2024,
  • [48] Length distributions of vapor-liquid-solid nanowires
    Berdnikov, Yu.
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 384 - 384
  • [49] Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism
    Adhikari, Hemant
    McIntyre, Paul C.
    Marshall, Ann F.
    Chidsey, Christopher E. D.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (09)
  • [50] Template-directed vapor-liquid-solid growth of silicon nanowires
    Lew, KK
    Reuther, C
    Carim, AH
    Redwing, JM
    Martin, BR
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (01): : 389 - 392