Influence of Dielectric Anisotropy on the Absorption Properties of Localized Surface Plasmon Resonances Embedded in Si Nanowires

被引:12
|
作者
Chou, Li-Wei [1 ]
Near, Rachel D. [2 ]
Boyuk, Dmitriy S. [1 ]
Filler, Michael A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 10期
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; LIGHT-SCATTERING; GOLD NANORODS; SILICON; NANOPARTICLES; TUNABILITY; DESIGN; SOLAR;
D O I
10.1021/jp501452q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We utilize discrete dipole approximation simulations to provide a detailed picture of the scattering behavior of mid-infrared localized surface plasmon resonances (LSPRs) in selectively doped (i.e., i-n(++)-i) Si nanowires. Our simulations, and their quantitative comparison to recent experimental results, show that the large refractive indices (n approximate to 3-4) of undoped semiconductors in the infrared and the anisotropic dielectric environment inherent in the nanowire geometry strongly enhance/depress absorption by the longitudinal/transverse LSPR. An examination of "cladding" materials other than Si (e.g., GaAs, Ge, etc.) reveals that this behavior scales with refractive index and that absorption enhancements of at least 35X are possible relative to an isotropic vacuum. We also show how scattering and absorption contribute to the overall extinction and extract a value for the carrier density of Si-based resonators synthesized via the vapor liquid solid (VLS) mechanism. Our findings establish a framework for rationally engineering LSPR spectral response in semiconductor nanowires and highlight the promise of the VLS technique for this purpose.
引用
收藏
页码:5494 / 5500
页数:7
相关论文
共 50 条
  • [31] Localized surface plasmon resonances in highly doped semiconductors nanostructures
    Guilengui, V. N'Tsame
    Cerutti, L.
    Rodriguez, J. -B.
    Tournie, E.
    Taliercio, T.
    APPLIED PHYSICS LETTERS, 2012, 101 (16)
  • [32] Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals
    Manthiram, Karthish
    Alivisatos, A. Paul
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) : 3995 - 3998
  • [33] Topology optimization of metal nanostructures for localized surface plasmon resonances
    Yongbo Deng
    Zhenyu Liu
    Chao Song
    Peng Hao
    Yihui Wu
    Yongmin Liu
    Jan G Korvink
    Structural and Multidisciplinary Optimization, 2016, 53 : 967 - 972
  • [34] Geometric Dependence of the Line Width of Localized Surface Plasmon Resonances
    Li, Yang
    Zhao, Ke
    Sobhani, Heidar
    Bao, Kui
    Nordlander, Peter
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08): : 1352 - 1357
  • [35] Localized surface plasmon resonance spectroscopy near molecular resonances
    Haes, Amanda J.
    Zou, Shengli
    Zhao, Jing
    Schatz, George C.
    Van Duyne, Richard P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (33) : 10905 - 10914
  • [36] Shape effects on localized surface plasmon resonances in metallic nanoparticles
    Sandu, Titus
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (06)
  • [37] Surface inspection by monitoring spectral shifts of localized plasmon resonances
    Albella, P.
    Moreno, F.
    Saiz, J. M.
    Gonzalez, F.
    OPTICS EXPRESS, 2008, 16 (17) : 12872 - 12879
  • [38] Localized surface plasmon resonance spectroscopy near molecular resonances
    Haes, Amanda J.
    Zou, Shengli
    Zhao, Jing
    Schatz, George C.
    Van Duyne, Richard P.
    Journal of the American Chemical Society, 2006, 128 (33): : 10905 - 10914
  • [39] Localized Surface Plasmon Resonances of Simple Tunable Plasmonic Nanostructures
    Luke C. Ugwuoke
    Tomáš Mančal
    Tjaart P. J. Krüger
    Plasmonics, 2020, 15 : 189 - 200
  • [40] Topology optimization of metal nanostructures for localized surface plasmon resonances
    Deng, Yongbo
    Liu, Zhenyu
    Song, Chao
    Hao, Peng
    Wu, Yihui
    Liu, Yongmin
    Korvink, Jan G.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 53 (05) : 967 - 972