Influence of Dielectric Anisotropy on the Absorption Properties of Localized Surface Plasmon Resonances Embedded in Si Nanowires

被引:12
|
作者
Chou, Li-Wei [1 ]
Near, Rachel D. [2 ]
Boyuk, Dmitriy S. [1 ]
Filler, Michael A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 10期
基金
美国国家科学基金会;
关键词
OPTICAL-PROPERTIES; LIGHT-SCATTERING; GOLD NANORODS; SILICON; NANOPARTICLES; TUNABILITY; DESIGN; SOLAR;
D O I
10.1021/jp501452q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We utilize discrete dipole approximation simulations to provide a detailed picture of the scattering behavior of mid-infrared localized surface plasmon resonances (LSPRs) in selectively doped (i.e., i-n(++)-i) Si nanowires. Our simulations, and their quantitative comparison to recent experimental results, show that the large refractive indices (n approximate to 3-4) of undoped semiconductors in the infrared and the anisotropic dielectric environment inherent in the nanowire geometry strongly enhance/depress absorption by the longitudinal/transverse LSPR. An examination of "cladding" materials other than Si (e.g., GaAs, Ge, etc.) reveals that this behavior scales with refractive index and that absorption enhancements of at least 35X are possible relative to an isotropic vacuum. We also show how scattering and absorption contribute to the overall extinction and extract a value for the carrier density of Si-based resonators synthesized via the vapor liquid solid (VLS) mechanism. Our findings establish a framework for rationally engineering LSPR spectral response in semiconductor nanowires and highlight the promise of the VLS technique for this purpose.
引用
收藏
页码:5494 / 5500
页数:7
相关论文
共 50 条
  • [1] Optically abrupt localized surface plasmon resonances in Si nanowires by mitigation of carrier density gradients
    School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta
    GA
    30332, United States
    ACS Nano, 2 (1250-1256):
  • [2] Optically Abrupt Localized Surface Plasmon Resonances in Si Nanowires by Mitigation of Carrier Density Gradients
    Chou, Li-Wei
    Boyuk, Dmitriy S.
    Filler, Michael A.
    ACS NANO, 2015, 9 (02) : 1250 - 1256
  • [3] Engineering Multimodal Localized Surface Plasmon Resonances in Silicon Nanowires
    Chou, Li-Wei
    Filler, Michael A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (31) : 8079 - 8083
  • [4] Calculation of the Localized Surface Plasmon Resonances of Au Nanoparticles Embedded in NiO
    Tsarmpopoulou, Maria
    Chronis, Alexandros G.
    Sigalas, Mihail
    Stamatelatos, Alkeos
    Poulopoulos, Panagiotis
    Grammatikopoulos, Spyridon
    SOLIDS, 2022, 3 (01): : 55 - 65
  • [5] Tunable Mid-Infrared Localized Surface Plasmon Resonances in Silicon Nanowires
    Chou, Li-Wei
    Shin, Naechul
    Sivaram, Saujan V.
    Filler, Michael A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (39) : 16155 - 16158
  • [6] Tunable Properties of Surface Plasmon Resonances: The Influence of Core–Shell Thickness and Dielectric Environment
    Nilesh Kumar Pathak
    Alok Ji
    R. P. Sharma
    Plasmonics, 2014, 9 : 651 - 657
  • [7] Tunable Properties of Surface Plasmon Resonances: The Influence of Core-Shell Thickness and Dielectric Environment
    Pathak, Nilesh Kumar
    Ji, Alok
    Sharma, R. P.
    PLASMONICS, 2014, 9 (03) : 651 - 657
  • [8] Localized surface plasmon resonances in aluminum nanodisks
    Langhammer, Christoph
    Schwind, Markus
    Kasemo, Bengt
    Zoric, Igor
    NANO LETTERS, 2008, 8 (05) : 1461 - 1471
  • [9] Localized surface plasmon resonances of a metal nanoring
    Mokkath, Junais Habeeb
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (41) : 23878 - 23885
  • [10] Tuning the frequency of localized surface plasmon resonances
    Conti, Carl
    Strouse, Geoffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258