The distribution of group structures on elliptic curves over finite prime fields

被引:0
|
作者
Gekeler, Ernst-Ulrich [1 ]
机构
[1] Univ Saarland, FR Math 6 1, D-66041 Saarbrucken, Germany
来源
DOCUMENTA MATHEMATICA | 2006年 / 11卷
关键词
elliptic curves over finite fields; group structures; counting functions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the probability that a randomly chosen elliptic curve E/F-p over a randomly chosen prime field F-p has an l-primary part E (F-p) [l infinity] isomorphic with a fixed abelian l-group H ((l)) (alpha,beta) = Z/ l(alpha) x Z/l(beta). Probabilities for "|E(F-p)| divisible by n", "E(F-p) cyclic" and expectations for the number of elements of precise order n in E(Fp) are derived, both for unbiased E/F-p and for E/F-p with p equivalent to 1 (l(r)).
引用
收藏
页码:119 / 142
页数:24
相关论文
共 50 条