DETERMINACY AND INDETERMINACY OF GAMES PLAYED ON COMPLETE METRIC SPACES

被引:3
|
作者
Fishman, Lior [1 ]
Ly, Tue [2 ]
Simmons, David [3 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
[2] Brandeis Univ, Dept Math, Waltham, MA 02454 USA
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
英国工程与自然科学研究理事会;
关键词
determinacy of games; Borel determinacy; Gale-Stewart games; Schmidt's game;
D O I
10.1017/S0004972714000069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Schmidt's game is a powerful tool for studying properties of certain sets which arise in Diophantine approximation theory, number theory and dynamics. Recently, many new results have been proven using this game. In this paper we address determinacy and indeterminacy questions regarding Schmidt's game and its variations, as well as more general games played on complete metric spaces (for example, fractals). We show that, except for certain exceptional cases, these games are undetermined on certain sets. Judging by the vast numbers of papers utilising these games, we believe that the results in this paper will be of interest to a large audience of number theorists as well as set theorists and logicians.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条
  • [41] Fixed point theorems for complete metric spaces
    Raghuwanshi, Sonika
    Gupta, Vijay
    Ghosh, Suparna
    Bhardwaj, Ramakant
    Rai, Swapnil
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6996 - 6998
  • [42] COMPLETE QUASI-PSEUDO-METRIC SPACES
    KUNZI, HP
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (1-2) : 121 - 146
  • [43] FIXED-POINTS IN COMPLETE METRIC SPACES
    REICH, S
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (05): : 270 - &
  • [44] Generalized Suzuki (ψ, φ)-contraction in complete metric spaces
    Mebawondu, A. A.
    Mebawondu, S. I.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 963 - 978
  • [45] COMPLETE METRIC SPACES AS PROJECTIVE LIMITS OF GRAPHS
    HOLMES, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 12 (48): : 389 - 396
  • [46] FIXED POINTS IN k COMPLETE METRIC SPACES
    Kikina, Luljeta
    Kikina, Kristaq
    DEMONSTRATIO MATHEMATICA, 2011, 44 (02) : 349 - 357
  • [47] VARIOUS COVERING SPECTRA FOR COMPLETE METRIC SPACES
    Sormani, Christina
    Wei, Guofang
    ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (01) : 171 - 202
  • [48] On complete metric spaces containing the Sierpinski curve
    Prajs, JR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3743 - 3747
  • [49] CATEGORY ALGEBRAS OF COMPLETE METRIC-SPACES
    MAHARAM, D
    STONE, AH
    MATHEMATIKA, 1979, 26 (51) : 13 - 17
  • [50] Berinde mappings in orbitally complete metric spaces
    Samet, Bessem
    Vetro, Calogero
    CHAOS SOLITONS & FRACTALS, 2011, 44 (12) : 1075 - 1079