Use of microgravity to interpret dendritic growth kinetics at small supercoolings

被引:29
|
作者
Tennenhouse, LA [1 ]
Koss, MB [1 ]
LaCombe, JC [1 ]
Glicksman, ME [1 ]
机构
[1] RENSSELAER POLYTECH INST,DEPT MAT SCI & ENGN,TROY,NY 12180
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0022-0248(96)01064-0
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The Isothermal Dendritic Growth Experiment (IDGE), first performed in low-earth orbit in March of 1994 showed variation in the growth data beyond that due to measurement uncertainties, and a significant deviation from predictions of diffusive transport theory with boundary conditions at infinity. Recently, two models described in the J. Crystal Growth suggested modifications from the Ivantsov model to describe the heat transfer of a dendrite growing into a supercooled melt. One model, by Sekerka et al. [J. Crystal Growth 154 (1995) 370], describes how convection resulting from the residual micro-accelerations present on orbit could enhance the heat transfer. Another, by Pines et al. [J. Crystal Growth 167 (1996) 383], describes the observed differences as a thermal boundary layer effect arising from the proximity of the growth chamber wall to the dendrite. Recent in-situ telemetry of dendrite ima of the IDGE in March 1996 showed no correlation between the variations in the crystal growth velocities and the quasi-static microgravity environment.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 50 条
  • [31] A Numerical Study on the Growth Process of InGaSb Crystals Under Microgravity with Interfacial Kinetics
    Mirsandi, H.
    Yamamoto, T.
    Takagi, Y.
    Okano, Y.
    Inatomi, Y.
    Hayakawa, Y.
    Dost, S.
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2015, 27 (05) : 313 - 320
  • [32] A Numerical Study on the Growth Process of InGaSb Crystals Under Microgravity with Interfacial Kinetics
    H. Mirsandi
    T. Yamamoto
    Y. Takagi
    Y. Okano
    Y. Inatomi
    Y. Hayakawa
    S. Dost
    Microgravity Science and Technology, 2015, 27 : 313 - 320
  • [33] Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation
    Lapuerta, S.
    Moncoffre, N.
    Jaffrezic, H.
    Millard-Pinard, N.
    Bererd, N.
    Esnouf, C.
    Crusset, D.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
  • [34] Effect of surface kinetics on the dendritic growth of ice in supercooled water
    Shibkov, AA
    Zheltov, MA
    Korolev, AA
    Kazakov, AA
    Leonov, AA
    CRYSTALLOGRAPHY REPORTS, 2004, 49 (06) : 1056 - 1063
  • [35] Dendritic Growth Model Involving Interface Kinetics for Supercooled Water
    Wang, Tianbao
    Lu, Yongjun
    Ai, Liqiang
    Zhou, Yusi
    Chen, Min
    LANGMUIR, 2019, 35 (15) : 5162 - 5167
  • [36] Effect of surface kinetics on the dendritic growth of ice in supercooled water
    A. A. Shibkov
    M. A. Zheltov
    A. A. Korolev
    A. A. Kazakov
    A. A. Leonov
    Crystallography Reports, 2004, 49 : 1056 - 1063
  • [37] DENDRITIC GROWTH-KINETICS AND STRUCTURE .2. CAMPHENE
    RUBINSTEIN, ER
    GLICKSMAN, ME
    JOURNAL OF CRYSTAL GROWTH, 1991, 112 (01) : 97 - 110
  • [38] THE GEOMETRICAL MODEL OF DENDRITIC GROWTH - THE SMALL VELOCITY LIMIT
    DASHEN, RF
    KESSLER, DA
    LEVINE, H
    SAVIT, R
    PHYSICA D, 1986, 21 (2-3): : 371 - 380
  • [39] Influence of interface kinetics on the relaxation behavior in solution system for crystal growth under microgravity
    Zhu, ZH
    Ge, PW
    Huo, CR
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1998, 7 (11): : 801 - 809
  • [40] The use of microgravity to detect small distributed voids and low-density ground
    Tuckwell, G.
    Grossey, T.
    Owen, S.
    Stearns, R.
    QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2008, 41 (03) : 371 - 380