FFLUX: Transferability of Polarizable Machine-Learned Electrostatics in Peptide Chains

被引:11
|
作者
Fletcher, Timothy L. [1 ,2 ]
Popelier, Paul L. A. [1 ,2 ]
机构
[1] MIB, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
force field; machine learning; QTAIM; transferability; quantum chemical topology; peptides; atomic charge; INTERACTING QUANTUM ATOMS; NATURAL AMINO-ACIDS; MULTIPOLAR ELECTROSTATICS; MOLECULAR-MECHANICS; GLOBAL OPTIMIZATION; FORCE-FIELDS; DISTRIBUTIONS; BIOMOLECULES; INTEGRATION; PREDICTION;
D O I
10.1002/jcc.24775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fully polarizable, multipolar, and atomistic force field protein FFLUX is being built from machine learning (i.e., kriging) models, each of which predicts an atomic property. Each atom of a given protein geometry needs to be assigned such a kriging model. Such a knowledgeable atom needs to be informed about a sufficiently large environment around it. The resulting complexity can be tackled by collecting the 20 natural amino acids into a few groups. Using substituted deca-alanines, we present the proof-of-concept that a given atom's charge can be modeled by a few kriging models only. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1005 / 1014
页数:10
相关论文
共 50 条
  • [41] Nonlocal machine-learned exchange functional for molecules and solids
    Bystrom, Kyle
    Kozinsky, Boris
    [J]. PHYSICAL REVIEW B, 2024, 110 (07)
  • [42] A theoretical case study of the generalization of machine-learned potentials
    Wang, Yangshuai
    Patel, Shashwat
    Ortner, Christoph
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 422
  • [43] Applications of machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 211A - 211A
  • [44] A FRAMEWORK FOR A GENERALIZATION ANALYSIS OF MACHINE-LEARNED INTERATOMIC POTENTIALS
    Ortner, Christoph
    Wang, Yangshuai
    [J]. MULTISCALE MODELING & SIMULATION, 2023, 21 (03): : 1053 - 1080
  • [45] Machine-learned pattern identification in olfactory subtest results
    Lotsch, Jorn
    Hummel, Thomas
    Ultsch, Alfred
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [46] Problems in the deployment of machine-learned models in health care
    Cohen, Joseph Paul
    Cao, Tianshi
    Viviano, Joseph D.
    Huang, Chin-Wei
    Fralick, Michael
    Ghassemi, Marzyeh
    Mamdani, Muhammad
    Greiner, Russell
    Bengio, Yoshua
    [J]. CANADIAN MEDICAL ASSOCIATION JOURNAL, 2021, 193 (35) : E1391 - E1394
  • [47] Machine-learned Behaviour Models for a Distributed Behaviour Repository
    Jahl, Alexander
    Baraki, Harun
    Jakob, Stefan
    Fax, Malte
    Geihs, Kurt
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 188 - 199
  • [48] Machine-learned and codified synthesis parameters of oxide materials
    Edward Kim
    Kevin Huang
    Alex Tomala
    Sara Matthews
    Emma Strubell
    Adam Saunders
    Andrew McCallum
    Elsa Olivetti
    [J]. Scientific Data, 4
  • [49] Simple machine-learned interatomic potentials for complex alloys
    Byggmastar, J.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW MATERIALS, 2022, 6 (08)
  • [50] Machine-Learned Models for Power Magnetic Material Characteristics
    Leszczyński, Pawel
    Kutorasiński, Kamil
    Szewczyk, Marcin
    Pawlowski, Jaroslaw
    [J]. IEEE Transactions on Power Electronics, 2025, 40 (01) : 1554 - 1562