FFLUX: Transferability of Polarizable Machine-Learned Electrostatics in Peptide Chains

被引:11
|
作者
Fletcher, Timothy L. [1 ,2 ]
Popelier, Paul L. A. [1 ,2 ]
机构
[1] MIB, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Chem, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
force field; machine learning; QTAIM; transferability; quantum chemical topology; peptides; atomic charge; INTERACTING QUANTUM ATOMS; NATURAL AMINO-ACIDS; MULTIPOLAR ELECTROSTATICS; MOLECULAR-MECHANICS; GLOBAL OPTIMIZATION; FORCE-FIELDS; DISTRIBUTIONS; BIOMOLECULES; INTEGRATION; PREDICTION;
D O I
10.1002/jcc.24775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fully polarizable, multipolar, and atomistic force field protein FFLUX is being built from machine learning (i.e., kriging) models, each of which predicts an atomic property. Each atom of a given protein geometry needs to be assigned such a kriging model. Such a knowledgeable atom needs to be informed about a sufficiently large environment around it. The resulting complexity can be tackled by collecting the 20 natural amino acids into a few groups. Using substituted deca-alanines, we present the proof-of-concept that a given atom's charge can be modeled by a few kriging models only. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1005 / 1014
页数:10
相关论文
共 50 条
  • [1] A FFLUX Water Model: Flexible, Polarizable and with a Multipolar Description of Electrostatics
    Hughes, Zak E.
    Ren, Emmanuel
    Thacker, Joseph C. R.
    Symons, Benjamin C. B.
    Silva, Arnaldo F.
    Popelier, Paul L. A.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (07) : 619 - 628
  • [2] Evaluating the transferability of machine-learned force fields for material property modeling
    Mohanty, Shaswat
    Yoo, SangHyuk
    Kang, Keonwook
    Cai, Wei
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2023, 288
  • [3] Transfer learning of hyperparameters for fast construction of anisotropic GPR models: design and application to the machine-learned force field FFLUX
    Isamura, Bienfait K.
    Popelier, Paul L. A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (36) : 23677 - 23691
  • [4] On the Role of Long-Range Electrostatics in Machine-Learned Interatomic Potentials for Complex Battery Materials
    Staacke, Carsten G.
    Heenen, Hendrik H.
    Scheurer, Christoph
    Csanyi, Gabor
    Reuter, Karsten
    Margraf, Johannes T.
    [J]. ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12562 - 12569
  • [5] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [6] Machine-learned tuning of artificial Kitaev chains from tunneling spectroscopy measurements
    Benestad, Jacob
    Tsintzis, Athanasios
    Souto, Ruben Seoane
    Leijnse, Martin
    van Nieuwenburg, Evert
    Danon, Jeroen
    [J]. PHYSICAL REVIEW B, 2024, 110 (07)
  • [7] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186
  • [8] Understanding machine-learned density functionals
    Li, Li
    Snyder, John C.
    Pelaschier, Isabelle M.
    Huang, Jessica
    Niranjan, Uma-Naresh
    Duncan, Paul
    Rupp, Matthias
    Mueller, Klaus-Robert
    Burke, Kieron
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2016, 116 (11) : 819 - 833
  • [9] Machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (03) : 499A - 499A
  • [10] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    [J]. JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197