Sentiment analysis through critic learning for optimizing convolutional neural networks with rules

被引:25
|
作者
Zhang, Bowen [1 ]
Xu, Xiaofei [1 ]
Li, Xutao [2 ]
Chen, Xiaojun [3 ]
Ye, Yunming [2 ]
Wang, Zhongjie [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software, Shenzhen, Peoples R China
关键词
Critic learning; First-order rules; Sentiment analysis;
D O I
10.1016/j.neucom.2019.04.038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentiment analysis is an important task in natural language processing. Previous studies have shown that integrating the knowledge rules into conventional classifiers can effectively improve the sentiment analysis accuracy. However, they suffer from two key deficiencies: (1) the given knowledge rules often contain mistakes or violations, which may hurt the performance if they cannot be adaptively utilized; (2) most of the studies leverage only the simple knowledge rules and sophisticated rules are ignored. In this paper, we propose a critic learning based convolutional neural network, which can address the two shortcomings. Our method is composed of three key parts, a feature-based predictor, a rule-based predictor and a critic learning network. The critic network can judge the importance of knowledge rules and adaptively use them. Moreover, a new filter initialization strategy is developed, which is able to take sophisticated rules into account. Extensive experiments are carried out, and the results show that the proposed method achieves better performance than state-of-the-art methods in sentiment analysis. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [21] Chinese Text Sentiment Analysis Based on Improved Convolutional Neural Networks
    Xiao, Kecong
    Zhang, Zishuai
    Wu, Jun
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 922 - 926
  • [22] Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks
    Ghorbanali, Alireza
    Sohrabi, Mohammad Karim
    Yaghmaee, Farzin
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (03)
  • [23] Convolutional Neural Networks with Hebbian-Based Rules in Online Transfer Learning
    Aguilar Canto, Fernando Javier
    ADVANCES IN SOFT COMPUTING, MICAI 2020, PT I, 2020, 12468 : 35 - 49
  • [24] Optimizing performance of feedforward and convolutional neural networks through dynamic activation functions
    Rane, Chinmay
    Tyagi, Kanishka
    Kline, Adrienne
    Chugh, Tushar
    Manry, Michael
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (5-6) : 4083 - 4093
  • [25] Lexicon-Based Sentiment Convolutional Neural Networks for Online Review Analysis
    Huang, Minghui
    Xie, Haoran
    Rao, Yanghui
    Liu, Yuwei
    Poon, Leonard K. M.
    Wang, Fu Lee
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1337 - 1348
  • [26] Sentiment Analysis of Medical Comments Based on Character Vector Convolutional Neural Networks
    Pan, Qiao
    Li, Hang
    Chen, Dehua
    Sun, Kaiqi
    2018 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2018, : 848 - 851
  • [27] OPTIMIZING CONTEXTUAL FEATURE LEARNING FOR MITOSIS DETECTION WITH CONVOLUTIONAL RECURRENT NEURAL NETWORKS
    Ha Tran Hong Phan
    Kumar, Ashnil
    Feng, Dagan
    Fulham, Michael
    Kim, Jinman
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 240 - 243
  • [28] Attention Visualization of Gated Convolutional Neural Networks with Self Attention in Sentiment Analysis
    Yanagimto, Hidekazu
    Hashimoto, Kiyota
    Okada, Makoto
    2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, : 77 - 82
  • [29] Sentiment Classification Via Recurrent Convolutional Neural Networks
    Du, Changshun
    Huang, Lei
    2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY, CII 2017, 2017, : 308 - 316
  • [30] VISUAL AND TEXTUAL SENTIMENT ANALYSIS USING DEEP FUSION CONVOLUTIONAL NEURAL NETWORKS
    Chen, Xingyue
    Wang, Yunhong
    Liu, Qingjie
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1557 - 1561