The effect of beryllium oxide on retention in JET ITER-like wall tiles

被引:19
|
作者
Makepeace, C. [1 ]
Pardanaud, C. [2 ]
Roubin, P. [2 ]
Borodkina, I [3 ,4 ]
Ayres, C. [5 ,14 ]
Coad, P. [5 ]
Baron-Wiechec, A. [5 ]
Jepu, I [6 ]
Heinola, K. [7 ,108 ]
Widdowson, A. [5 ]
Lozano-Perez, S. [1 ]
Abduallev, S. [46 ]
Abhangi, M. [53 ]
Abreu, P. [60 ]
Afzal, M. [14 ]
Aggarwal, K. M. [36 ]
Ahlgren, T. [108 ]
Ahn, J. H. [15 ]
Aho-Mantila, L. [118 ]
Aiba, N. [76 ]
Airila, M. [118 ]
Albanese, R. [111 ]
Aldred, V. [14 ]
Alegre, D. [100 ]
Alessi, E. [52 ]
Aleynikov, P. [62 ]
Alfier, A. [19 ]
Alkseev, A. [79 ]
Allinson, M. [14 ]
Alper, B. [14 ]
Alves, E. [60 ]
Ambrosino, G. [111 ]
Ambrosino, R. [112 ]
Amicucci, L. [97 ]
Amosov, V. [95 ]
Sunden, E. Andersson [29 ]
Angelone, M. [97 ]
Anghel, M. [92 ]
Angioni, C. [69 ]
Appel, L. [14 ]
Appelbee, C. [14 ]
Arena, P. [37 ]
Ariola, M. [112 ]
Arnichand, H. [15 ]
Arshad, S. [48 ]
Ash, A. [14 ]
Ashikawa, N. [75 ]
Aslanyan, V. [71 ]
Asunta, O. [8 ]
Auriemma, F. [19 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France
[3] Natl Res Nucl Univ MEPHI, Kashirskoe Sh 31, Moscow 115409, Russia
[4] Forschungszentrum Julich, Wilhelm Johnen Str, D-52428 Julich, Germany
[5] Culliam Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[6] Natl Inst Laser Plasma & Radiat Phys, Bucharest 077125, Romania
[7] Univ Helsinki, POB 64, FI-00560 Helsinki, Finland
[8] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[9] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[10] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[11] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[12] Arizona State Univ, Tempe, AZ USA
[13] Barcelona Supercomp Ctr, Barcelona, Spain
[14] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[15] CEA, IRFM, F-13108 St Paul Les Durance, France
[16] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[17] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[18] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[19] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[20] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[21] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[22] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[23] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[24] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[25] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[26] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[27] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[28] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[29] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[30] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[31] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[32] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[33] Univ Basel, Dept Phys, Basel, Switzerland
[34] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[35] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[36] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[37] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[38] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[39] Dublin City Univ, Dublin, Ireland
[40] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[41] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[42] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[43] European Commiss, B-1049 Brussels, Belgium
[44] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[45] FOM Inst DIFFER, Eindhoven, Netherlands
[46] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[47] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[48] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[49] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
[50] Gen Atom, POB 85608, San Diego, CA 92186 USA
基金
英国工程与自然科学研究理事会;
关键词
ADSORPTION; OXIDATION; HYDROGEN; H2O; O-2;
D O I
10.1016/j.nme.2019.02.022
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 degrees C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures.
引用
收藏
页码:346 / 351
页数:6
相关论文
共 50 条
  • [21] Surface morphology of the bulk tungsten divertor tiles from JET ITER-like wall
    Tokitani, M.
    Miyamoto, M.
    Masuzaki, S.
    Hatano, Y.
    Lee, S. E.
    Oya, Y.
    Otsuka, T.
    Oyaidzu, M.
    Kurotaki, H.
    Suzuki, T.
    Hamaguchi, D.
    Hayashi, T.
    Asakura, N.
    Widdowson, A.
    Jachmich, S.
    Rubel, M.
    PHYSICA SCRIPTA, 2020, T171 (01)
  • [22] Surface analysis of tiles and samples exposed to the first JET campaigns with the ITER-like wall
    Coad, J. P.
    Alves, E.
    Barradas, N. P.
    Baron-Wiechec, A.
    Catarino, N.
    Heinola, K.
    Likonen, J.
    Mayer, M.
    Matthews, G. F.
    Petersson, P.
    Widdowson, A.
    PHYSICA SCRIPTA, 2014, T159
  • [23] Deuterium retention on the tungsten-coated divertor tiles of JET ITER-like wall in 2015-2016 campaign
    Lahtinen, A.
    Likonen, J.
    Koivuranta, S.
    Alves, E.
    Baron-Wiechec, A.
    Catarino, N.
    Coad, J. P.
    Heinola, K.
    Raisanen, J.
    Widdowson, A.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1979 - 1982
  • [24] The effect of ITER-like wall on runaway electron generation in JET
    Papp, G.
    Fulop, T.
    Feher, T.
    de Vries, P. C.
    Riccardo, V.
    Reux, C.
    Lehnen, M.
    Kiptily, V.
    Plyusnin, V. V.
    Alper, B.
    NUCLEAR FUSION, 2013, 53 (12)
  • [25] Study of physical and chemical assisted physical sputtering of beryllium in the JET ITER-like wall
    Brezinsek, S.
    Stamp, M. F.
    Nishijima, D.
    Borodin, D.
    Devaux, S.
    Krieger, K.
    Marsen, S.
    O'Mullane, M.
    Bjoerkas, C.
    Kirschner, A.
    NUCLEAR FUSION, 2014, 54 (10)
  • [26] Power handling of the JET ITER-like wall
    Arnoux, G.
    Balboa, I.
    Clever, M.
    Devaux, S.
    De Vries, P.
    Eich, T.
    Firdaouss, M.
    Jachmich, S.
    Lehnen, M.
    Lomas, P. J.
    Matthews, G. F.
    Mertens, Ph
    Nunes, I.
    Riccardo, V.
    Ruset, C.
    Sieglin, B.
    Valcarcel, D. F.
    Wilson, J.
    Zastrow, K-D
    PHYSICA SCRIPTA, 2014, T159
  • [27] Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall
    Widdowson, A.
    Baldwin, M. J.
    Coad, J. P.
    Doerner, R. P.
    Hanna, J.
    Hole, D. E.
    Matthews, G. F.
    Rubel, M.
    Seraydarian, R.
    Xu, H.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 988 - 991
  • [28] The influence of an ITER-like wall on disruptions at JET
    de Vries, P. C.
    Baruzzo, M.
    Hogeweij, G. M. D.
    Jachmich, S.
    Joffrin, E.
    Lomas, P. J.
    Matthews, G. F.
    Murari, A.
    Nunes, I.
    Puetterich, T.
    Reux, C.
    Vega, J.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [29] Overview of the JET ITER-like Wall Project
    Philipps, V.
    Mertens, Ph.
    Matthews, G. F.
    Maier, H.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (7-9) : 1581 - 1586
  • [30] Overview of the JET ITER-like wall divertor
    Widdowson, A.
    Alves, E.
    Baron-Wiechec, A.
    Barradas, N. P.
    Catarino, N.
    Coad, J. P.
    Corregidor, V.
    Garcia-Carrasco, A.
    Heinola, K.
    Koivuranta, S.
    Krat, S.
    Lahtinen, A.
    Likonen, J.
    Mayer, M.
    Petersson, P.
    Rubel, M.
    Van Boxel, S.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 499 - 505