Automated analysis of high-content microscopy data with deep learning

被引:174
|
作者
Kraus, Oren Z. [1 ,2 ]
Grys, Ben T. [2 ,3 ]
Ba, Jimmy [1 ]
Chong, Yolanda [4 ]
Frey, Brendan J. [1 ,2 ,5 ,6 ]
Boone, Charles [2 ,3 ,5 ]
Andrews, Brenda J. [2 ,3 ,5 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
[2] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[3] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[4] Johnson & Johnson, Janssen Pharmaceut Companies, Cellular Pharmacol, Discovery Sci, Beerse, Belgium
[5] Canadian Inst Adv Res, Program Genet Networks, Toronto, ON, Canada
[6] Canadian Inst Adv Res, Program Learning Machines & Brains, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
deep learning; high-content screening; image analysis; machine learning; Saccharomyces cerevisiae; SINGLE-CELL; PROTEIN LOCALIZATION; SACCHAROMYCES-CEREVISIAE; CLASSIFICATION; ABUNDANCE; CIRCUITRY; PATHWAYS; PATTERNS; GENES;
D O I
10.15252/msb.20177551
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Automated Rapid and Accurate Cell Cycle Analysis with High-Content Imaging
    Sirenko, O.
    Zoldhadr, K.
    Cromwell, E. F.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [22] MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry
    Wen, Yuan
    Murach, Kevin A.
    Vechetti, Ivan J., Jr.
    Fry, Christopher S.
    Vickery, Chase
    Peterson, Charlotte A.
    McCarthy, John J.
    Campbell, Kenneth S.
    JOURNAL OF APPLIED PHYSIOLOGY, 2018, 124 (01) : 40 - 51
  • [23] Strategies for High-Content Light Sheet Microscopy
    Au, Aaron
    McFaul, Christopher M. J.
    Yip, Christopher M.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 187A - 187A
  • [24] Microscopy-Based High-Content Screening
    Boutros, Michael
    Heigwer, Florian
    Laufer, Christina
    CELL, 2015, 163 (06) : 1314 - 1325
  • [25] DetecTiff©: A Novel Image Analysis Routine for High-Content Screening Microscopy
    Gilbert, Daniel F.
    Meinhof, Till
    Pepperkok, Rainer
    Runz, Heiko
    JOURNAL OF BIOMOLECULAR SCREENING, 2009, 14 (08) : 944 - 955
  • [26] Correlative light microscopy for high-content screening
    Flottmann, Benjamin
    Gunkel, Manuel
    Lisauskas, Tautvydas
    Heilemann, Mike
    Starkuviene, Vytaute
    Reymann, Juergen
    Erfle, Holger
    BIOTECHNIQUES, 2013, 55 (05) : 245 - +
  • [27] High-content analysis in neuroscience
    Mike Dragunow
    Nature Reviews Neuroscience, 2008, 9 : 779 - 788
  • [28] Functional analysis of high-content high-throughput imaging data
    Jiang, Xiaoqi
    Wink, Steven
    van de Water, Bob
    Kopp-Schneider, Annette
    JOURNAL OF APPLIED STATISTICS, 2017, 44 (11) : 1903 - 1919
  • [29] High-Content Cytotoxicity Analysis
    Wylie, Paul
    Janes, Mike
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2009, 29 (11): : 32 - 33
  • [30] π-PhenoDrug: A Comprehensive Deep Learning-Based Pipeline for Phenotypic Drug Screening in High-Content Analysis
    Li, Xiao
    Ouyang, Qinxue
    Han, Mingfei
    Liu, Xiaoqing
    He, Fuchu
    Zhu, Yunping
    Leng, Ling
    Ma, Jie
    ADVANCED INTELLIGENT SYSTEMS, 2025,