Multiple-scattering theory for three-dimensional periodic acoustic composites

被引:330
|
作者
Kafesaki, M
Economou, EN
机构
[1] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Greece
[2] Univ Crete, Dept Phys, Iraklion, Greece
关键词
D O I
10.1103/PhysRevB.60.11993
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present results for acoustic wave propagation in periodic composites consisting of solid spheres in a fluid host. We show that for solid scatterers in fluid host material combinations the extensively used plane-wave method is inadequate to produce accurate results and a new approach is required. Our band-structure results are obtained by using a multiple-scattering approach based on an extension of the well-known Korringa-Kohn-Rostoker method. [S0163-1829(99)04841-9].
引用
收藏
页码:11993 / 12001
页数:9
相关论文
共 50 条
  • [41] Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals
    Ponyavina, A
    Kachan, S
    Sil'vanovich, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (10) : 1866 - 1875
  • [42] 3-DIMENSIONAL FORMALISM FOR FERMI-EYGES MULTIPLE-SCATTERING THEORY
    JETTE, D
    PAGNAMENTA, A
    LANZL, LH
    ROZENFELD, M
    MEDICAL PHYSICS, 1982, 9 (04) : 607 - 608
  • [43] Acoustic scattering from two- and three-dimensional bodies
    Chung, C
    Morris, PJ
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 1998, 6 (03) : 357 - 375
  • [44] Three-dimensional acoustic scattering by complex obstacles: the accuracy issue
    Ben Hassen, M. F.
    Ivanyshyn, O.
    Sini, M.
    INVERSE PROBLEMS, 2010, 26 (10)
  • [45] Acoustic scattering by a partially buried three-dimensional elastic obstacle
    Lim, R
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (02): : 769 - 782
  • [46] On two models in the three-dimensional theory of stability of composites
    A. N. Guz
    V. A. Dekret
    International Applied Mechanics, 2008, 44 : 839 - 854
  • [47] On two models in the three-dimensional theory of stability of composites
    Guz, A. N.
    Dekret, V. A.
    INTERNATIONAL APPLIED MECHANICS, 2008, 44 (08) : 839 - 854
  • [48] Scattering amplitudes in three-dimensional superconformal field theory
    Bianchi, Marco S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (07):
  • [49] Scattering amplitudes in three-dimensional superconformal field theory
    Marco S. Bianchi
    The European Physical Journal Plus, 128
  • [50] Three-dimensional theory of weakly nonlinear Compton scattering
    Albert, F.
    Anderson, S. G.
    Gibson, D. J.
    Marsh, R. A.
    Siders, C. W.
    Barty, C. P. J.
    Hartemann, F. V.
    PHYSICS OF PLASMAS, 2011, 18 (01)