Expected asymptotically optimal planar point location

被引:21
|
作者
Iacono, J [1 ]
机构
[1] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
来源
基金
美国国家科学基金会;
关键词
point location; distribution-sensitive data structures;
D O I
10.1016/j.comgeo.2004.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a fixed distribution of point location queries among the triangles in a triangulation of the plane, a data structure is presented that achieves, within constant multiplicative factors, the entropy bound on the expected point location query time. The data structure is a simple variation of Kirkpatrick's classic planar point location structure [D.G. Kirkpatrick, SIAM J. Comput. 12 (1) (1983) 28-35], and has linear construction costs and space requirements. (C) 2004 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:19 / 22
页数:4
相关论文
共 50 条
  • [21] A NEW APPROACH TO PLANAR POINT LOCATION
    PREPARATA, FP
    SIAM JOURNAL ON COMPUTING, 1981, 10 (03) : 473 - 482
  • [22] Asymptotically optimal solutions in the change-point problem
    Borovkov, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1999, 43 (04) : 539 - 561
  • [23] An Asymptotically Optimal Estimator for Source Location and Propagation Speed by TDOA
    Sun, Yimao
    Ho, K. C.
    Yang, Yanbing
    Chen, Liangyin
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1037 - 1041
  • [24] Adaptive Point Location in Planar Convex Subdivisions
    Cheng, Siu-Wing
    Lau, Man-Kit
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 14 - 22
  • [25] PARALLEL BATCHED PLANAR POINT LOCATION ON THE CCC
    LEE, DT
    PREPARATA, FP
    INFORMATION PROCESSING LETTERS, 1989, 33 (04) : 175 - 179
  • [26] PRACTICAL EFFICIENCIES OF PLANAR POINT LOCATION ALGORITHMS
    KAGAMI, S
    EDAHIRO, M
    ASANO, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (04) : 608 - 614
  • [27] NEW RESULTS ON DYNAMIC PLANAR POINT LOCATION
    SIU, WC
    JANARDAN, R
    SIAM JOURNAL ON COMPUTING, 1992, 21 (05) : 972 - 999
  • [28] Distance-sensitive planar point location
    Aronov, Boris
    de Berg, Mark
    Eppstein, David
    Roeloffzen, Marcel
    Speckmann, Bettina
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 54 : 17 - 31
  • [29] Entropy, Triangulation, and Point Location in Planar Subdivisions
    Collette, Sebastien
    Dujmovic, Vida
    Iacono, John
    Langerman, Stefan
    Morin, Pat
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (03)
  • [30] OPTIMAL PLANT LOCATION ON PLANAR AND SPHERICAL SURFACES
    PYLES, DA
    OKLAHOMA AGRICULTURAL EXPERIMENT STATION TECHNICAL BULLETIN, 1988, (T-164): : 1 - 24