Privacy-Constrained Parallel Distributed Neyman-Pearson Test

被引:14
|
作者
Li, Zuxing [1 ]
Oechtering, Tobias J. [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn, S-10044 Stockholm, Sweden
来源
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS | 2017年 / 3卷 / 01期
基金
瑞典研究理事会;
关键词
Cyber-physical system; eavesdropper; likelihood-ratio test; person-by-person optimality; physical-layer secrecy; ENCRYPTION; SENSORS;
D O I
10.1109/TSIPN.2016.2623092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the privacy leakage problem in an eavesdropped parallel distributed binary hypothesis test network is considered. A novel Neyman-Pearson test-operational privacy leakage measure is proposed and a privacy-constrained distributed Neyman-Pearson test problem is formulated. Such privacy-constrained distributed Neyman-Pearson test network is designed to optimize the Neyman-Pearson test performance and meanwhile to satisfy a desired suppression constraint on the privacy leakage. This study characterizes the privacy-constrained distributed Neyman-Pearson test network design and particularly identifies the sufficiency of deterministic likelihood-ratio test for optimality. These results help to simplify the optimal design problem of a privacy-constrained distributed Neyman-Pearson test network. Numerical results are presented to show the trade-off between the test performance and privacy leakage in privacy-constrained distributed Neyman-Pearson test networks.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [31] DID PEARSON REJECT THE NEYMAN-PEARSON PHILOSOPHY OF STATISTICS
    MAYO, DG
    SYNTHESE, 1992, 90 (02) : 233 - 262
  • [32] Randomized fusion rules can be optimal in distributed Neyman-Pearson detectors
    Han, YI
    Kim, TJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1281 - 1288
  • [33] NONPARAMETRIC BINARY NEYMAN-PEARSON DETECTOR
    AKIMOV, PS
    YEFREMOV, VS
    KUBASOV, AN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1978, 21 (04): : 78 - 83
  • [34] A GENERALIZATION OF THE NEYMAN-PEARSON FUNDAMENTAL LEMMA
    CHERNOFF, H
    SCHEFFE, H
    ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02): : 213 - 225
  • [35] A GENERALIZATION OF THE NEYMAN-PEARSON FUNDAMENTAL LEMMA
    SCHEFFE, H
    ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01): : 137 - 137
  • [36] Rademacher complexity in Neyman-Pearson classification
    Han, Min
    Chen, Di Rong
    Sun, Zhao Xu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (05) : 855 - 868
  • [37] Rademacher Complexity in Neyman-Pearson Classification
    Min HANDepartment of Applied Mathematics
    Acta Mathematica Sinica(English Series), 2009, 25 (05) : 855 - 868
  • [38] DISCRETE SEARCH AND NEYMAN-PEARSON LEMMA
    KADANE, JB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 22 (01) : 156 - &
  • [39] Goodness of fit by Neyman-Pearson testing
    Grosso, Gaia
    Letizia, Marco
    Pierini, Maurizio
    Wulzer, Andrea
    SCIPOST PHYSICS, 2024, 16 (05):
  • [40] THE NEYMAN-PEARSON LEMMA FOR CONVEX EXPECTATIONS
    Sun, Chuanfeng
    Ji, Shaolin
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2024,