Numerical Solutions of a Class of Nonlinear Volterra Integral Equations

被引:1
|
作者
Malindzisa, H. S. [1 ]
Khumalo, M. [1 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
关键词
ITERATED COLLOCATION METHODS; 2ND KIND;
D O I
10.1155/2014/652631
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider numerical solutions of a class of nonlinear (nonstandard) Volterra integral equations. We first prove the existence and uniqueness of the solution of the Volterra integral equation in the context of the space of continuous functions over a closed interval. We then use one-point collocation methods with a uniform mesh to construct solutions of the nonlinear (nonstandard) VIE and quadrature rules. We conclude that the repeated Simpson's rule gives better solutions when a reasonably large value of the stepsize is used.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method
    Ghasemi, M.
    Kajani, M. Tavassoli
    Babolian, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 446 - 449
  • [32] Numerical Solution of Nonlinear Backward Stochastic Volterra Integral Equations
    Samar, Mahvish
    Yao, Kutorzi Edwin
    Zhu, Xinzhong
    AXIOMS, 2023, 12 (09)
  • [33] Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag
    Mosa, Gamal A.
    Abdou, Mohamed A.
    Rahby, Ahmed S.
    AIMS MATHEMATICS, 2021, 6 (08): : 8525 - 8543
  • [34] APPROXIMATE SOLUTIONS FOR SOME NONLINEAR VOLTERRA INTEGRAL-EQUATIONS
    NAKAGIRI, SI
    MURAKAMI, H
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (03): : 212 - 217
  • [35] CLASSIFICATION OF POSITIVE SOLUTIONS OF NONLINEAR SYSTEMS OF VOLTERRA INTEGRAL EQUATIONS
    Raffoul, Youssef N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (02): : 34 - 41
  • [36] NUMERICAL SOLUTIONS OF FUZZY VOLTERRA INTEGRAL EQUATIONS BY CHARACTERIZATION THEOREMS
    Zhang, Dong-Kai
    Liu, Xiu-Jun
    Zhou, Chang-Jie
    Qiu, Ji-Qing
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 737 - +
  • [38] Numerical solutions of a class of linear and nonlinear Volterra integral equations of the third kind using collocation method based on radial basis functions
    Aourir, E.
    Izem, N.
    Dastjerdi, H. Laeli
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [39] Numerical solutions of a class of linear and nonlinear Volterra integral equations of the third kind using collocation method based on radial basis functions
    E. Aourir
    N. Izem
    H. Laeli Dastjerdi
    Computational and Applied Mathematics, 2024, 43
  • [40] Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials
    Nemati, S.
    Lima, P. M.
    Ordokhani, Y.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 242 : 53 - 69