On symmetric digraphs of the congruence xk ≡ y (mod n)

被引:28
|
作者
Somer, Lawrence [1 ]
Krizek, Michal [2 ]
机构
[1] Catholic Univ Amer, Dept Math, Washington, DC 20064 USA
[2] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague 1, Czech Republic
关键词
Chinese Remainder Theorem; Congruence; Symmetric digraphs;
D O I
10.1016/j.disc.2008.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We assign to each pair of positive integers n and k >= 2 a digraph G(n, k) whose set of vertices is H = {0, 1, . . . , n - 1} and for which there is a directed edge from a is an element of H to b is an element of H if a(k) equivalent to b (mod n). The digraph G(n, k) is symmetric of order M if its set of components can be partitioned into subsets of size M with each subset containing M isomorphic components. We generalize earlier theorems by Szalay, Carlip, and Mincheva on symmetric digraphs G(n, 2) of order 2 to symmetric digraphs G(n, k) of order M when k >= 2 is arbitrary. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1999 / 2009
页数:11
相关论文
共 50 条
  • [21] On the symmetric digraphs from powers modulo n
    Deng, Guixin
    Yuan, Pingzhi
    DISCRETE MATHEMATICS, 2012, 312 (04) : 720 - 728
  • [22] Congruence mod 25
    Beasley, BD
    FIBONACCI QUARTERLY, 1999, 37 (04): : 374 - 374
  • [23] A Note on the Congruence (nd md) ≡ (n m) (mod q)
    Mestrovic, Romeo
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (01): : 75 - 77
  • [24] On Mod Difference Labeling of Digraphs
    Hegde, S. M.
    Vasudeva
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2009, 6 (01) : 79 - 84
  • [25] THE CONGRUENCE xx λ (mod p)
    Cilleruelo, J.
    Garaev, M. Z.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2411 - 2418
  • [26] Computing solutions to the congruence 1n+2n + ... + nn p (mod n)
    Alekseyev, Max A.
    Maria Grau, Jose
    Oller-Marcen, Antonio M.
    DISCRETE APPLIED MATHEMATICS, 2020, 286 (286) : 3 - 9
  • [27] Solutions of the congruence 1+2f (n) + . . . + nf (n) ≡ 0 (mod n)
    Maria Grau, Jose
    Moree, Pieter
    Oller-Marcen, Antonio M.
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (07) : 820 - 830
  • [28] The congruence xn =- a n ( mod m ) : Solvability and related OEIS sequences
    Merikoski, Jorma K.
    Haukkanen, Pentti
    Tossavainen, Timo
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (03) : 516 - 529
  • [29] SYMMETRIC CONGRUENCE
    SINGH, S
    FIBONACCI QUARTERLY, 1981, 19 (01): : 88 - 89
  • [30] Multiflows in symmetric digraphs
    Jarry, Aubin
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2208 - 2220