SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS

被引:3
|
作者
Pham, T. D. [1 ]
Tran, T. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
pseudodifferential equation; sphere; radial basis function; collocation method; POSITIVE-DEFINITE FUNCTIONS;
D O I
10.1017/S0004972709000069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Spherical radial basis functions are used to define approximate solutions to pseudodifferential equations of negative order on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the collocation method. A salient feature of our approach in this paper is a simple error analysis for the collocation method using the same argument as that for the Galerkin method.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 50 条
  • [1] Preconditioners for pseudodifferential equations on the sphere with radial basis functions
    T. Tran
    Q. T. Le Gia
    I. H. Sloan
    E. P. Stephan
    [J]. Numerische Mathematik, 2010, 115 : 141 - 163
  • [2] Preconditioners for pseudodifferential equations on the sphere with radial basis functions
    Tran, T.
    Le Gia, Q. T.
    Sloan, I. H.
    Stephan, E. P.
    [J]. NUMERISCHE MATHEMATIK, 2010, 115 (01) : 141 - 163
  • [3] Strongly elliptic pseudodifferential equations on the sphere with radial basis functions
    T. D. Pham
    T. Tran
    [J]. Numerische Mathematik, 2014, 128 : 589 - 614
  • [4] Strongly elliptic pseudodifferential equations on the sphere with radial basis functions
    Pham, T. D.
    Tran, T.
    [J]. NUMERISCHE MATHEMATIK, 2014, 128 (03) : 589 - 614
  • [5] Solving non-strongly elliptic pseudodifferential equations on a sphere using radial basis functions
    Pham, D. T.
    Tran, T.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) : 1970 - 1983
  • [6] Numerical solutions of the Kawahara type equations using radial basis functions
    Dereli, Yilmaz
    Dag, Idris
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 542 - 553
  • [7] RADIAL SOLUTIONS OF NON-ARCHIMEDEAN PSEUDODIFFERENTIAL EQUATIONS
    Kochubei, Anatoly N.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (02) : 355 - 369
  • [8] On Spherical Averages of Radial Basis Functions
    B. J. C. Baxter
    [J]. Foundations of Computational Mathematics, 2008, 8 : 395 - 407
  • [9] On spherical averages of radial basis functions
    Baxter, B. J. C.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) : 395 - 407
  • [10] EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS
    Lai, S. J.
    Wang, B. Z.
    Duan, Y.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2011, 24 : 69 - 76