EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

被引:0
|
作者
Lai, S. J. [1 ]
Wang, B. Z. [1 ]
Duan, Y. [2 ]
机构
[1] Univ Elect Sci & Technol China, Inst Appl Phys, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.2528/PIERL11040904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper applies a meshless method based on radial basis function (RBF) collocation to solve three-dimensional scalar Helmholtz equation in rectangular coordinates and analyze the eigenvalues of spherical resonant cavity. The boundary conditions of spherical cavity are deduced. The RBF interpolation method and the collocation procedure are applied to the Helmholtz and boundary condition equations, and their discretization matrix formulations are obtained. The eigenvalues of spherical resonant cavity with natural conformal node distribution are computed by the proposed method. Their results are agreement with the analytic solution.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 50 条
  • [1] On Spherical Averages of Radial Basis Functions
    B. J. C. Baxter
    [J]. Foundations of Computational Mathematics, 2008, 8 : 395 - 407
  • [2] On spherical averages of radial basis functions
    Baxter, B. J. C.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) : 395 - 407
  • [3] Inverse Multiquadric Radial Basis Functions in Eigenvalue Analysis of a Circular Waveguide Using Radial Point Interpolation Method
    Sivaram, S. Aditya
    Vinoy, K. J.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (06) : 537 - 540
  • [4] Solving an eigenvalue problem with a periodic domain using radial basis functions
    Hart, E. E.
    Cox, S. J.
    Djidjeli, K.
    Kubytskyi, V. O.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (02) : 258 - 262
  • [5] SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS
    Pham, T. D.
    Tran, T.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 473 - 485
  • [6] Modeling Bidirectional Texture Functions with Multivariate Spherical Radial Basis Functions
    Tsai, Yu-Ting
    Fang, Kuei-Li
    Lin, Wen-Chieh
    Shih, Zen-Chung
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (07) : 1356 - 1369
  • [7] Importance sampling of products from illumination and BRDF using spherical radial basis functions
    Yu-Ting Tsai
    Chin-Chen Chang
    Qing-Zhen Jiang
    Shr-Ching Weng
    [J]. The Visual Computer, 2008, 24 : 817 - 826
  • [8] Importance sampling of products from illumination and BRDF using spherical radial basis functions
    Tsai, Yu-Ting
    Chang, Chin-Chen
    Jiang, Qing-Zhen
    Weng, Shr-Ching
    [J]. VISUAL COMPUTER, 2008, 24 (7-9): : 817 - 826
  • [9] Local gravity field modeling using spherical radial basis functions and a genetic algorithm
    Mahbuby, Hany
    Safari, Abdolreza
    Foroughi, Ismael
    [J]. COMPTES RENDUS GEOSCIENCE, 2017, 349 (03) : 106 - 113
  • [10] Artifacts in regional gravity representations with spherical radial basis functions
    Bentel, K.
    Schmidt, M.
    Denby, C. Rolstad
    [J]. JOURNAL OF GEODETIC SCIENCE, 2013, 3 (03) : 173 - 187