The connected prescription for form factors in twistor space

被引:24
|
作者
Brandhuber, A. [1 ]
Hughes, E. [1 ]
Panerai, R. [1 ]
Spence, B. [1 ]
Travaglini, G. [1 ]
机构
[1] Queen Mary Univ London, Sch Phys & Astron, Ctr Res String Theory, Mile End Rd, London E1 4NS, England
来源
基金
英国科学技术设施理事会;
关键词
Scattering Amplitudes; Supersymmetric gauge theory; YANG-MILLS THEORY; RECURSION RELATION; GAUGE-THEORY;
D O I
10.1007/JHEP11(2016)143
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a connected prescription formula in twistor space for all tree-level form factors of the stress tensor multiplet operator in N = 4 super Yang-Mills, which is a generalisation of the expression of Roiban, Spradlin and Volovich for superamplitudes. By introducing link variables, we show that our formula is identical to the recently proposed four-dimensional scattering equations for form factors. Similarly to the case of amplitudes, the link representation of form factors is shown to be directly related to BCFW recursion relations, and is considerably more tractable than the scattering equations. We also discuss how our results are related to a recent Grassmannian formulation of form factors, and comment on a possible derivation of our formula from ambitwistor strings.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Maximally helicity-violating diagrams in twistor space and the twistor action
    Adamo, Tim
    Mason, Lionel
    PHYSICAL REVIEW D, 2012, 86 (06):
  • [22] REPRESENTATION OF YOUNG-MILLS EQUATIONS IN THE FORM OF CAUCHY-RIEMANN EQUATIONS ON THE TWISTOR SPACE
    KHENKIN, GM
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (04): : 844 - 847
  • [23] Causality and Borromean linking in twistor space
    Low, Robert J.
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (19)
  • [24] A DUALITY FOR HOMOGENEOUS BUNDLES ON TWISTOR SPACE
    EASTWOOD, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1985, 31 : 349 - 356
  • [25] Integrable deformations from twistor space
    Cole, Lewis T.
    Cullinan, Ryan A.
    Hoare, Ben
    Liniado, Joaquin
    Thompson, Daniel C.
    SCIPOST PHYSICS, 2024, 17 (01):
  • [26] The S-matrix in twistor space
    N. Arkani-Hamed
    F. Cachazo
    C. Cheung
    J. Kaplan
    Journal of High Energy Physics, 2010
  • [27] THE FROHLICHER SPECTRAL SEQUENCE ON A TWISTOR SPACE
    EASTWOOD, MG
    SINGER, MA
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 38 (03) : 653 - 669
  • [28] On discrete differential geometry in twistor space
    Shapiro, George
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 68 : 81 - 102
  • [29] Integrability of the twistor space for a hypercomplex manifold
    Kaledin D.
    Selecta Mathematica, 1998, 4 (2) : 271 - 278
  • [30] Supersymmetric gauge theories in twistor space
    Boels, Rutger
    Mason, Lionel
    Skinner, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):