An immersed interface method for simulating the interaction of a fluid with moving boundaries

被引:273
|
作者
Xu, Sheng [1 ]
Wang, Z. Jane [1 ]
机构
[1] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
关键词
immersed interface method; immersed boundary method; Cartesian grid method; moving deformable boundaries; complex geometries; flow around multiple objects; singular force;
D O I
10.1016/j.jcp.2005.12.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the immersed interface method, boundaries are represented as singular force in the Navier-Stokes equations, which enters a numerical scheme as jump conditions. Recently, we systematically derived all the necessary spatial and temporal jump conditions for simulating incompressible viscous flows subject to moving boundaries in 3D with second-order spatial and temporal accuracy near the boundaries [Sheng Xu, Z. Jane Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM J. Sci. Comput., 2006, in press]. In this paper we implement the immersed interface method to incorporate these jump conditions in a 2D numerical scheme. We study the accuracy, efficiency and robustness of our method by simulating Taylor-Couette flow, flow induced by a relaxing balloon, flow past single and multiple cylinders, and flow around a flapping wing. Our results show that: (1) our code has second-order accuracy in the infinity norm for both the velocity and the pressure; (2) the addition of an object introduces relatively insignificant computational cost; (3) the method is equally effective in computing flow subject to boundaries with prescribed force or boundaries with prescribed motion. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 493
页数:40
相关论文
共 50 条