Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays

被引:5
|
作者
Wang, Min [1 ,3 ]
Li, Haohao [2 ,3 ]
Dai, Chenghu [1 ,3 ]
Tang, Ji [1 ,3 ]
Yin, Baipeng [1 ,3 ]
Wang, Hong [1 ,3 ]
Li, Jingwen [1 ,3 ]
Wu, Yuchen [2 ,3 ]
Zhang, Chuang [1 ,3 ]
Zhao, Yong Sheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, Key Lab Photochem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
lead halide perovskite; optical grating structure; optically pumped laser; lenticular printing; laser display; LIGHT; PHOTOLUMINESCENCE; ARRAYS;
D O I
10.1007/s11426-020-9919-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lenticular printing technique provides a promising way to realize stereoscopic displays, especially, when microscopic optical structures are integrated into light-emitting materials/devices. Here, we fabricated large-area periodic structures with a spatial resolution at a wavelength scale from hybrid perovskite materials via a space-confined solution growth method. It takes advantages of both high refractive index contrast and high luminescence brightness, which allows the optical modulation on not only the reflection of illumination, but also the light emission from hybrid perovskites. The distributed feedback within these periodic structures significantly improves the degree of polarization and directionality of laser actions while their threshold is also reduced. These findings enable us to present a prototype of lenticular printing laser displays that vary emission colors at different view angles, which may find applications in creating high-resolution and high-contrast holographical images.
引用
收藏
页码:629 / 635
页数:7
相关论文
共 50 条
  • [31] Mass Transfer Printing of Metal-Halide Perovskite Films and Nanostructures
    Li, Zhijian
    Chu, Shenglong
    Zhang, Yihan
    Chen, Wenjing
    Chen, Jia
    Yuan, Yongbo
    Yang, Shangfeng
    Zhou, Hongmin
    Chen, Tao
    Xiao, Zhengguo
    ADVANCED MATERIALS, 2022, 34 (35)
  • [32] FLAT PANELS CHALLENGE CRTS FOR LARGE-AREA DISPLAYS
    HALL, E
    ELECTRONIC DESIGN, 1981, 29 (11) : 61 - &
  • [33] Realizing Large-Area Arrays of Semiconducting Fullerene Nanostructures with Direct Laser Interference Patterning
    Enevold, Jenny
    Larsen, Christian
    Zakrisson, Johan
    Andersson, Magnus
    Edman, Ludvig
    NANO LETTERS, 2018, 18 (01) : 540 - 545
  • [34] Large-area laser printing of Ag thick film pattern with stepwise edge morphology
    Lee, Hyeongjae
    Shin, Hyunkwon
    Lee, Myeongkyu
    OPTICS AND LASERS IN ENGINEERING, 2010, 48 (03) : 380 - 384
  • [35] Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching
    C. H. Liu
    M. H. Hong
    M. C. Lum
    H. Flotow
    F. Ghadessy
    J. B. Zhang
    Applied Physics A, 2010, 101 : 237 - 241
  • [36] Laser Printing of Large-Area Conformal 3D photonic Circuits in Glass
    Han, Xuhu
    Wang, Yuying
    Hu, Jiacheng
    Zhong, Lijing
    Qiu, Jianrong
    LASER & PHOTONICS REVIEWS, 2024, 18 (09)
  • [37] Large-area micro/nanostructures fabrication in quartz by laser interference lithography and dry etching
    Liu, C. H.
    Hong, M. H.
    Lum, M. C.
    Flotow, H.
    Ghadessy, F.
    Zhang, J. B.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 101 (02): : 237 - 241
  • [38] Laser crystallization for large-area electronics
    Toshiyuki Sameshima
    Applied Physics A, 2009, 96 : 137 - 144
  • [39] A Large-Area Electronics Processing Platform Using Laser Technology for the Customization of Liquid Crystal Displays
    Yatulis, Jay
    Butler, Ryan
    Higgins, Mathew
    LaPlante, Curtis
    Chae, Soo Joh
    Jhun, Chul Gyu
    Kim, Woo Young
    ELECTRONIC MATERIALS LETTERS, 2009, 5 (04) : 195 - 200
  • [40] Laser crystallization for large-area electronics
    Sameshima, Toshiyuki
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (01): : 137 - 144