Classical solution of quasi-stationary Stefan problem

被引:0
|
作者
Yi, FH [1 ]
机构
[1] SUZHOU UNIV,DEPT MATH,SUZHOU 215006,PEOPLES R CHINA
关键词
classical solution; quasi-stationary; Stefan problem; Frechet derivative;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the quasi-stationary Stefan problem: Delta u(x, t) = 0 in space-time domain, u = 0 and V-nu + partial derivative u/partial derivative nu = 0 on the free boundary. Under the natural conditions the existence of classical solution locally in time is proved by making use of the property of Frechet derivative operator and fixed point theorem. For the sake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can be dealt with in a similar way with more complicated calculation.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [41] EXCITATION OF QUASI-STATIONARY STATES
    MALEV, AV
    RUDAKOV, VS
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1988, (02): : 84 - 86
  • [42] EVOLUTION OF A QUASI-STATIONARY STATE
    WINTER, RG
    PHYSICAL REVIEW, 1961, 123 (04): : 1503 - +
  • [43] QUASI-STATIONARY STREAMER PROPAGATION
    Bolotov, O.
    Kadolin, B.
    Mankovskyi, S.
    Ostroushko, V
    Pashchenko, I
    Taran, G.
    Zavada, L.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, (04): : 185 - 188
  • [44] QUASI-STATIONARY DESCRIPTION OF FLUCTUATIONS
    BONASERA, A
    GULMINELLI, F
    SCHUCK, P
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C71 - C80
  • [45] VECTORIAL QUASI-STATIONARY DISTRIBUTIONS
    VOKHAC, K
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (17): : 867 - &
  • [46] QUASI-STATIONARY QUASI-ENERGY STATES
    MANAKOV, NL
    RAPOPORT, LP
    FAINSHTEIN, AG
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1981, 45 (12): : 2401 - 2419
  • [47] SOLUTION OF QUASI-STATIONARY FIELD PROBLEMS BY MEANS OF MAGNETIC SCALAR POTENTIAL
    POLTZ, J
    ROMANOWSKI, K
    IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (06) : 2425 - 2428
  • [48] AN INVERSE PROBLEM FOR A LINEARIZED QUASI-STATIONARY PHASE FIELD MODEL WITH DEGENERACY
    Ivanova, N. D.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2013, 6 (02): : 128 - 132
  • [49] A QUASI-STATIONARY SOLUTION TO GLIESE 436b's ECCENTRICITY
    Batygin, Konstantin
    Laughlin, Gregory
    Meschiari, Stefano
    Rivera, Eugenio
    Vogt, Steve
    Butler, Paul
    ASTROPHYSICAL JOURNAL, 2009, 699 (01): : 23 - 30
  • [50] SOLUTION OF THE STEFAN PROBLEM ON THE 1/2-LINE IN A NEIGHBORHOOD OF A STATIONARY SOLUTION
    LABUTIN, SA
    DIFFERENTIAL EQUATIONS, 1992, 28 (04) : 556 - 562