Automorphisms of Riemann-Cartan manifolds

被引:1
|
作者
Pan'zhenskii, V. I. [1 ]
机构
[1] Penza State Univ, Penza, Russia
关键词
Riemann-Cartan manifold; Lie group of automorphisms; automorphism group of maximal dimension; torsion; curvature;
D O I
10.1134/S000143461509028X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the maximal dimension of the Lie group of automorphisms of an n-dimensional Riemann-Cartan manifold (space) (M (n) , g, ) equals n(n - 1)/2+ 1 for n > 4 and, if the connection is semisymmetric, for n a parts per thousand yen 2. If n = 3, then the maximal dimension of the group equals 6. Three-dimensional Riemann-Cartan spaces (M (3), g, ) with automorphism group of maximal dimension are studied: the torsion s and the curvature are introduced, and it is proved that s and are characteristic constants of the space and = k - s (2), where k is the sectional curvature of the Riemannian space (M (3), g); a geometric interpretation of torsion is given. For Riemann-Cartan spaces with antisymmetric connection, the notion of torsion at a given point in a given three-dimensional direction is introduced.
引用
收藏
页码:613 / 623
页数:11
相关论文
共 50 条
  • [41] SEELEY-DEWITT COEFFICIENTS IN A RIEMANN-CARTAN MANIFOLD
    COGNOLA, G
    ZERBINI, S
    PHYSICS LETTERS B, 1988, 214 (01) : 70 - 74
  • [42] Gravitational anomalies in higher dimensional Riemann-Cartan space
    Yajima, S.
    Tokuo, S.
    Fukuda, M.
    Higashida, Y.
    Kamo, Y.
    Kubota, S-I
    Taira, H.
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (04) : 965 - 979
  • [43] Riemann-Cartan space-time in stringy geometry
    Sazdovic, B
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 94 - 108
  • [44] Nonholonomic versus vakonomic dynamics on a Riemann-Cartan manifold
    Guo, YX
    Wang, Y
    Chee, GY
    Mei, FX
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
  • [45] An Entropy Functional for Riemann-Cartan Space-Times
    F. Hammad
    International Journal of Theoretical Physics, 2012, 51 : 362 - 373
  • [46] BOSONIZATION IN A TWO-DIMENSIONAL RIEMANN-CARTAN GEOMETRY
    DENARDO, G
    SPALLUCCI, E
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1987, 98 (01): : 25 - 36
  • [47] New torsion structure on Riemann-Cartan manifold and knots
    Li, XG
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1999, 23 (09): : 906 - 913
  • [48] On Spacelike Congruences in Riemann-Cartan Space-time
    Katkar, L. N.
    Patil, V. K.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) : 3035 - 3043
  • [49] SPECTRAL GEOMETRY OF THE RIEMANN-CARTAN SPACE-TIME
    OBUKHOV, YN
    NUCLEAR PHYSICS B, 1983, 212 (02) : 237 - 254
  • [50] ON MINIMAL COUPLING IN RIEMANN-CARTAN SPACE-TIMES
    SAA, A
    MODERN PHYSICS LETTERS A, 1993, 8 (27) : 2565 - 2568