A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes

被引:52
|
作者
Ren, Yibin [1 ,2 ,3 ]
Chen, Huanfa [4 ]
Han, Yong [5 ,6 ]
Cheng, Tao [7 ]
Zhang, Yang [7 ]
Chen, Ge [5 ,6 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Ocean Circulat & Waves, Inst Oceanol, Qingdao, Shandong, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Shandong, Peoples R China
[3] Qingdao Natl Lab Marine, Pilot Natl Lab Marine Sci & Technol, Qingdao, Shandong, Peoples R China
[4] UCL, Ctr Adv Spatial Anal, London, England
[5] Ocean Univ China, Coll Informat Sci & Engn, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao, Shandong, Peoples R China
[6] Qingdao Natl Lab Marine, Lab Reg Oceanog & Numer Modeling, Qingdao, Shandong, Peoples R China
[7] UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab, London, England
基金
英国工程与自然科学研究理事会;
关键词
Spatio-temporal flow volume; prediction; deep learning; LSTM; ResNet; PASSENGER DEMAND; PATTERNS; NETWORK; MOBILE;
D O I
10.1080/13658816.2019.1652303
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns.
引用
收藏
页码:802 / 823
页数:22
相关论文
共 50 条
  • [21] Traffic Flow Prediction Based on Deep Spatio-Temporal Domain Adaptation
    Wang, Zhihui
    Li, Bingxin
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, DEXA 2024, 2024, 14911 : 110 - 115
  • [22] A Comprehensive Spatio-Temporal Model for Subway Passenger Flow Prediction
    Zhang, Zhihao
    Han, Yong
    Peng, Tongxin
    Li, Zhenxin
    Chen, Ge
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (06)
  • [23] Predicting citywide crowd flows using deep spatio-temporal residual networks
    Zhang, Junbo
    Zheng, Yu
    Qi, Dekang
    Li, Ruiyuan
    Yi, Xiuwen
    Li, Tianrui
    ARTIFICIAL INTELLIGENCE, 2018, 259 : 147 - 166
  • [24] Spatio-Temporal Graph Convolutional and Recurrent Networks for Citywide Passenger Demand Prediction
    Bai, Lei
    Yao, Lina
    Kanhere, Salil S.
    Wang, Xianzhi
    Liu, Wei
    Yang, Zheng
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2293 - 2296
  • [25] Spatio-temporal analysis of subsurface drainage flow volumes
    Bakhsh, A
    Kanwar, RS
    TRANSACTIONS OF THE ASAE, 2004, 47 (05): : 1427 - 1436
  • [26] A spatio-temporal deep learning model for enhanced atmospheric correction
    Shah, Maitrik
    Raval, Mehul S.
    Divakaran, Srikrishnan
    Dhar, Debjyoti
    Parmar, Hasit
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [27] Deep Spatio-temporal Learning Model for Air Quality Forecasting
    Zhang, L.
    Li, D.
    Guo, Q.
    Pan, J.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (02) : 1 - 14
  • [28] Wind Speed Prediction with Spatio-Temporal Correlation: A Deep Learning Approach
    Zhu, Qiaomu
    Chen, Jinfu
    Zhu, Lin
    Duan, Xianzhong
    Liu, Yilu
    ENERGIES, 2018, 11 (04)
  • [29] Effect of Spatio-Temporal Granularity on Demand Prediction for Deep Learning Models
    Varghese, Ken Koshy
    Mahdaviabbasabad, Sajjad
    Gentile, Guido
    Eldafrawi, Mohamed
    TRANSPORT AND TELECOMMUNICATION JOURNAL, 2023, 24 (01) : 22 - 32
  • [30] Cross-City Transfer Learning for Deep Spatio-Temporal Prediction
    Wang, Leye
    Geng, Xu
    Ma, Xiaojuan
    Liu, Feng
    Yang, Qiang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1893 - 1899