A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes

被引:52
|
作者
Ren, Yibin [1 ,2 ,3 ]
Chen, Huanfa [4 ]
Han, Yong [5 ,6 ]
Cheng, Tao [7 ]
Zhang, Yang [7 ]
Chen, Ge [5 ,6 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Ocean Circulat & Waves, Inst Oceanol, Qingdao, Shandong, Peoples R China
[2] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Shandong, Peoples R China
[3] Qingdao Natl Lab Marine, Pilot Natl Lab Marine Sci & Technol, Qingdao, Shandong, Peoples R China
[4] UCL, Ctr Adv Spatial Anal, London, England
[5] Ocean Univ China, Coll Informat Sci & Engn, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao, Shandong, Peoples R China
[6] Qingdao Natl Lab Marine, Lab Reg Oceanog & Numer Modeling, Qingdao, Shandong, Peoples R China
[7] UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab, London, England
基金
英国工程与自然科学研究理事会;
关键词
Spatio-temporal flow volume; prediction; deep learning; LSTM; ResNet; PASSENGER DEMAND; PATTERNS; NETWORK; MOBILE;
D O I
10.1080/13658816.2019.1652303
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns.
引用
收藏
页码:802 / 823
页数:22
相关论文
共 50 条
  • [1] A Hybrid GLM Model for Predicting Citywide Spatio-Temporal Metro Passenger Flow
    Han, Yong
    Peng, Tongxin
    Wang, Cheng
    Zhang, Zhihao
    Chen, Ge
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)
  • [2] Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction
    Zhang, Junbo
    Zheng, Yu
    Qi, Dekang
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1655 - 1661
  • [3] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [4] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478
  • [5] An accurate and efficient deep learning model for spatio-temporal prediction of interfacial flows
    Deng, Yangyu
    Zhang, Di
    Cao, Ze
    Liu, Yakun
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [6] DeepSTD: Mining Spatio-Temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction
    Zheng, Chuanpan
    Fan, Xiaoliang
    Wen, Chenglu
    Chen, Longbiao
    Wang, Cheng
    Li, Jonathan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 3744 - 3755
  • [7] Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks
    Chen, Cen
    Li, Kenli
    Teo, Sin G.
    Zou, Xiaofeng
    Li, Keqin
    Zeng, Zeng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (04)
  • [8] Traffic Flow Parameters Estimation Based on Spatio-temporal Characteristics and Hybrid Deep Learning
    Zhang W.-S.
    Yao R.-H.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (01): : 82 - 89
  • [9] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [10] STICAP: Spatio-temporal Interactive Attention for Citywide Crowd Activity Prediction
    Huang, Huiqun
    He, Suining
    Yang, Xi
    Tabatabaie, Mahan
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2024, 10 (01)