Spectral Properties of Extended Sierpinski Graphs and Their Applications

被引:13
|
作者
Qi, Yi [1 ]
Zhang, Zhongzhi [1 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Sch Comp Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Sierpinski graph; graph spectrum; spanning tree; random walk; cover time; mean hitting time; RESISTANCE; NETWORKS; CONSENSUS; TOWER; HAMILTONICITY; WIENER; TIMES;
D O I
10.1109/TNSE.2018.2797483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The eigenvalues of a graph present a wide range of applications in structural and dynamical aspects of the graph. Determining and analyzing spectra of a graph has been an important and exciting research topic in recent years. In this paper, we study the spectra and their applications for extended Sierpinski graphs, which are closely related to WK-recursive networks that are widely used in the design and implementation of local area networks and parallel processing architectures. Moreover, a particular case of extended Sierpinski graphs is the dual of Apollonian network, which displays the prominent scale-free small-world characteristics as observed in various real networks. We derive recursive relations of the characteristic polynomials for extended Sierpinski graphs at two successive iterations, based on which we determine all the eigenvalues, their corresponding multiplicities and properties. We then use the obtained eigenvalues to evaluate the number of spanning trees, Kirchhoff index of extended Sierpinski graphs, as well as mean hitting time and cover time for random walks on the graphs.
引用
收藏
页码:512 / 522
页数:11
相关论文
共 50 条
  • [31] Coloring Hanoi and Sierpinski graphs
    Hinz, Andreas M.
    Parisse, Daniele
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1521 - 1535
  • [32] Covering codes in Sierpinski graphs
    Beaudou, Laurent
    Gravier, Sylvain
    Klavzar, Sandi
    Kovse, Matjaz
    Mollard, Michel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (03):
  • [33] Shortest paths in Sierpinski graphs
    Xue, Bing
    Zuo, Liancui
    Wang, Guanghui
    Li, Guojun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 314 - 321
  • [34] The Average Eccentricity of Sierpinski Graphs
    Hinz, Andreas M.
    Parisse, Daniele
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 671 - 686
  • [35] On spectral radius and energy of extended adjacency matrix of graphs
    Das, Kinkar Ch.
    Gutman, Ivan
    Furtula, Boris
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 116 - 123
  • [36] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [37] Peg solitaire game on Sierpinski graphs
    Akyar, Handan
    Cakmak, Nazlican
    Torun, Nilay
    Akyar, Fmrah
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2249 - 2258
  • [38] SOME SPECTRAL PROPERTIES OF PSEUDO-DIFFERENTIAL OPERATORS ON THE SIERPINSKI GASKET
    Ionescu, Marius
    Okoudjou, Kasso A.
    Rogers, Luke G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 2183 - 2198
  • [39] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [40] Italian domination on Mycielskian and Sierpinski graphs
    Varghese, Jismy
    Lakshmanan, S. Aparna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)