Compact Quotients of Cahen-Wallach Spaces

被引:4
|
作者
Kath, Ines
Olbrich, Martin
机构
关键词
D O I
10.1090/memo/1264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Indecomposable symmetric Lorentzian manifolds of non-constant curvature are called Cahen-Wallach spaces. Their isometry classes are described by continuous families of real parameters. We derive necessary and sufficient conditions for the existence of compact quotients of Cahen-Wallach spaces in terms of these parameters.
引用
收藏
页码:1 / +
页数:85
相关论文
共 50 条
  • [31] Quotients of Banach spaces and surjectively universal spaces
    Dodos, Pandelis
    STUDIA MATHEMATICA, 2010, 197 (02) : 171 - 194
  • [32] The dynamics of the Ricci flow on generalized Wallach spaces
    Abiev, N. A.
    Arvanitoyeorgos, A.
    Nikonorov, Yu G.
    Siasos, P.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 26 - 43
  • [33] QUOTIENTS OF COMPLETE BORNOLOGICAL SPACES
    WAELBROECK, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (14): : 899 - 901
  • [34] QUOTIENTS OF COMPLETE PROXIMITY SPACES
    NACHMAN, LJ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (01): : 17 - &
  • [35] QUOTIENTS OF B-SPACES
    WAELBROE.L
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1972, (31-3): : 389 - 394
  • [36] QUOTIENTS OF COMPLETELY REGULAR SPACES
    HIMMELBE.CJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (04) : 864 - +
  • [37] Quotients of tensor product spaces
    Monika
    Rao, T. S. S. R. K.
    RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 125 - 134
  • [38] Torus quotients of homogeneous spaces
    S Senthamarai Kannan
    Proceedings Mathematical Sciences, 1998, 108 : 1 - 12
  • [39] Torus quotients of homogeneous spaces
    Kannan, SS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (01): : 1 - 12
  • [40] UNIFORM QUOTIENTS OF METRIC SPACES
    MARXEN, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A293 - A294