Sertraline Is an Effective SARS-CoV-2 Entry Inhibitor Targeting the Spike Protein

被引:17
|
作者
Chen, Yuliu [1 ]
Wu, Yan [2 ]
Chen, Shaoying [1 ]
Zhan, Qingping [1 ]
Wu, Dingzhou [1 ]
Yang, Chan [1 ]
He, Xiaoxue [2 ]
Qiu, Mengjie [1 ]
Zhang, Nannan [3 ]
Li, Zhaofeng [1 ]
Guo, Yunhua [4 ]
Wen, Minjun [1 ]
Lu, Lu [5 ,6 ]
Ma, Cuiqing [7 ]
Guo, Jiayin [1 ]
Xu, Wei [1 ]
Li, Xiaojuan [1 ]
Li, Lin [1 ]
Jiang, Shibo [5 ,6 ]
Pan, Xiaoyan [2 ]
Liu, Shuwen [1 ]
Tan, Suiyi [1 ]
机构
[1] Southern Med Univ, Sch Pharmaceut Sci, NMPA Key Lab Res & Evaluat Drug Metab, Guangdong Prov Key Lab New Drug Screening, Guangzhou, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Virol, Ctr Biosafety Mega Sci, State Key Lab Virol, Wuhan, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Dept Neurosurg, Guangzhou, Peoples R China
[4] Southern Med Univ, Nanfang Hosp, Dept Thorac Surg, Guangzhou, Peoples R China
[5] Fudan Univ, Sch Basic Med Sci, Key Lab Med Mol Virol MOE NHC CAMS, Shanghai, Peoples R China
[6] Fudan Univ, Biosafety Level Lab 3, Shanghai, Peoples R China
[7] Hebei Med Univ, Dept Immunol, Key Lab Immune Mech & Intervent Serious Dis Hebei, Shijiazhuang, Peoples R China
关键词
entry inhibitor; inflammation; SARS-CoV-2; sertraline; spike; RECEPTOR-BINDING DOMAIN; VIRUS; COVID-19; COMBINATIONS; CHLOROQUINE; DEPRESSION; INFECTION; EFFICACY; EBOLA;
D O I
10.1128/jvi.01245-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. The global spread of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the continuously emerging new variants underscore an urgent need for effective therapeutics for the treatment of coronavirus disease 2019 (COVID-19). Here, we screened several FDA-approved amphiphilic drugs and determined that sertraline (SRT) exhibits potent antiviral activity against infection of SARS-CoV-2 pseudovirus (PsV) and authentic virus in vitro. It effectively inhibits SARS-CoV-2 spike (S)-mediated cell-cell fusion. SRT targets the early stage of viral entry. It can bind to the S1 subunit of the S protein, especially the receptor binding domain (RBD), thus blocking S-hACE2 interaction and interfering with the proteolysis process of S protein. SRT is also effective against infection with SARS-CoV-2 PsV variants, including the newly emerging Omicron. The combination of SRT and other antivirals exhibits a strong synergistic effect against infection of SARS-CoV-2 PsV. The antiviral activity of SRT is independent of serotonin transporter expression. Moreover, SRT effectively inhibits infection of SARS-CoV-2 PsV and alleviates the inflammation process and lung pathological alterations in transduced mice in vivo. Therefore, SRT shows promise as a treatment option for COVID-19.IMPORTANCE The study shows SRT is an effective entry inhibitor against infection of SARS-CoV-2, which is currently prevalent globally. SRT targets the S protein of SARS-CoV-2 and is effective against a panel of SARS-CoV-2 variants. It also could be used in combination to prevent SARS-CoV-2 infection. More importantly, with long history of clinical use and proven safety, SRT might be particularly suitable to treat infection of SARS-CoV-2 in the central nervous system and optimized for treatment in older people, pregnant women, and COVID-19 patients with heart complications, which are associated with severity and mortality of COVID-19.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] The Elusive Coreceptors for the SARS-CoV-2 Spike Protein
    Berkowitz, Reed L. L.
    Ostrov, David A. A.
    VIRUSES-BASEL, 2023, 15 (01):
  • [32] SARS-CoV-2 Spike Protein Interaction Space
    Lungu, Claudiu N.
    Putz, Mihai V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [33] Proteolytic activation of SARS-CoV-2 spike protein
    Takeda, Makoto
    MICROBIOLOGY AND IMMUNOLOGY, 2022, 66 (01) : 15 - 23
  • [34] Is the Stalk of the SARS-CoV-2 Spike Protein Druggable?
    Pipito, Ludovico
    Reynolds, Christopher A.
    Deganutti, Giuseppe
    VIRUSES-BASEL, 2022, 14 (12):
  • [35] Allosteric regulation in SARS-CoV-2 spike protein
    Wei, Yong
    Chen, Amy X.
    Lin, Yuewei
    Wei, Tao
    Qiao, Baofu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 6582 - 6589
  • [36] SARS-CoV-2 spike protein allays pain
    Sekhar, Jerin
    Passi, Gouri Rao
    INDIAN PEDIATRICS, 2020, 57 (11) : 1091 - 1091
  • [37] The roles of glycans in the SARS-CoV-2 spike protein
    Casalino, Lorenzo
    Amaro, Rommie E.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 459A - 460A
  • [38] Mutations and Evolution of the SARS-CoV-2 Spike Protein
    Magazine, Nicholas
    Zhang, Tianyi
    Wu, Yingying
    McGee, Michael C.
    Veggiani, Gianluca
    Huang, Weishan
    VIRUSES-BASEL, 2022, 14 (03):
  • [39] Biomimetic SARS-CoV-2 Spike Protein Nanoparticles
    Phan, Alvin
    Avila, Hugo
    MacKay, J. Andrew
    BIOMACROMOLECULES, 2023, 24 (05) : 2030 - 2041
  • [40] Binding of the SARS-CoV-2 spike protein to glycans
    Hao, Wei
    Ma, Bo
    Li, Ziheng
    Wang, Xiaoyu
    Gao, Xiaopan
    Li, Yaohao
    Qin, Bo
    Shang, Shiying
    Cui, Sheng
    Tan, Zhongping
    SCIENCE BULLETIN, 2021, 66 (12) : 1205 - 1214