Average Distance and Vertex-Connectivity

被引:17
|
作者
Dankelmann, Peter [1 ]
Mukwembi, Simon [1 ]
Swart, Henda C. [1 ]
机构
[1] Univ Kwazulu Natal, Sch Math Sci, ZA-4041 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
distance; average distance; connectivity; radius; GRAPHS; RADIUS;
D O I
10.1002/jgt.20395
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The average distance p(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., mu(G) = ((n)(2))(-1) Sigma({x,y}subset of V(G)) d(G)(x, y), where V(G) denotes the vertex set of G and d(G)(x, y) is the distance between x and y. We prove that if G is a K-vertex-connected graph, kappa >= 3 an odd integer, of order n, then mu(G) <= n/2(kappa+1) + O(1). Our bound is shown to be best possible and our results, apart from answering a question of Plesnik [J Graph Theory 8 (1984), 1-24], Favaron et al. [Networks 19 (1989), 493-504], can be used to deduce a theorem that is essentially equivalent to a theorem by Egawa and Inoue [Ars Combin 51 (1999), 89-95] on the radius of a K-vertex-connected graph of given order, where kappa is odd. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 62: 157-177, 2009
引用
收藏
页码:157 / 177
页数:21
相关论文
共 50 条
  • [1] Degree distance and vertex-connectivity
    Ali, P.
    Mukwembi, S.
    Munyira, S.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) : 2802 - 2811
  • [2] The vertex-connectivity of a distance-regular graph
    Brouwer, Andries E.
    Koolen, Jack H.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (03) : 668 - 673
  • [3] Eulerian orientations and vertex-connectivity
    Horsch, Florian
    Szigeti, Zoltan
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 289 : 115 - 124
  • [4] Directed vertex-connectivity augmentation
    Frank A.
    [J]. Mathematical Programming, 1999, 84 (3) : 537 - 553
  • [5] Vertex-connectivity and eigenvalues of graphs
    Hong, Zhen-Mu
    Xia, Zheng-Jiang
    Lai, Hong-Jian
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 579 (72-88) : 72 - 88
  • [6] The vertex-connectivity index revisited
    Amic, D
    Beslo, D
    Lucic, B
    Nikolic, S
    Trinajstic, N
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (05): : 819 - 822
  • [7] ON THE OPTIMAL VERTEX-CONNECTIVITY AUGMENTATION
    JORDAN, T
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 8 - 20
  • [8] Directed vertex-connectivity augmentation
    Frank, J
    Jordán, T
    [J]. MATHEMATICAL PROGRAMMING, 1999, 84 (03) : 537 - 553
  • [9] A note on the vertex-connectivity augmentation problem
    Jordan, T
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) : 294 - 301
  • [10] On the Vertex-Connectivity of an Uncertain Random Graph
    Li, Hao
    Gao, Xin
    [J]. IEEE ACCESS, 2020, 8 : 85504 - 85514