Vertex-connectivity and eigenvalues of graphs

被引:6
|
作者
Hong, Zhen-Mu [1 ]
Xia, Zheng-Jiang [1 ]
Lai, Hong-Jian [2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Finance, Bengbu 233030, Anhui, Peoples R China
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Vertex-connectivity; Algebraic connectivity; Adjacency eigenvalue; Laplacian eigenvalue; Signless Laplacian eigenvalue; DISJOINT SPANNING-TREES;
D O I
10.1016/j.laa.2019.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let kappa(G), mu(n-1)(G) lambda(2)(G) and q(2)(G) denote the vertex-connectivity, the algebraic connectivity, the second largest adjacency eigenvalue, and the second largest signless Laplacian eigenvalue of G, respectively. In this paper, we prove that for an integer k > 0 and any simple graph G of order n with maximum degree Delta and minimum degree delta >= k, the vertex-connectivity kappa(G) >= k if mu(n-1)(G) > H-2(Delta, delta, k) or lambda(2)(G) < delta - H-2(Delta, delta, k) or q(2)(G) < 2 delta - H-2(Delta, delta, k), where H-2(Delta, delta, k) = (k-1)n Delta/(n-k+1)(k-1)+4(delta-k+2) (n-delta-1), which improves the result in [Appl. Math. Comput. 344-345 (2019) 141-149] and the result in [Electron. J. Linear Algebra 34 (2018) 428-443]. Analogue results involving mu(n-1)(G), lambda(2)(G) and q(2)(G) to characterize vertex-connectivity of regular graphs, triangle-free graphs and graphs with fixed girth are also presented. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 88
页数:17
相关论文
共 50 条