Hypersurfaces in symplectic affine geometry

被引:3
|
作者
Deconchy, V [1 ]
机构
[1] Univ Montpellier 2, Dept Math CC 51, Lab GTA, UMR 5030, F-34095 Montpellier 5, France
关键词
affine geometry; symplectic geometry; isoperimetric inequality;
D O I
10.1016/S0926-2245(01)00067-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of hypersurfaces of the standard symplectic space (R-2n,omega), which are invariant under affine symplectic transformations. In this framework, we describe the invariants of hypersurfaces and discuss the existence of an isoperimetric inequality. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [21] Skeleta of affine hypersurfaces
    Ruddat, Helge
    Sibilla, Nicolo
    Treumann, David
    Zaslow, Eric
    GEOMETRY & TOPOLOGY, 2014, 18 (03) : 1343 - 1395
  • [22] DECOMPOSABLE AFFINE HYPERSURFACES
    Antic, Miroslava
    Dillen, Franki
    Schoels, Kristof
    Vrancken, Luc
    KYUSHU JOURNAL OF MATHEMATICS, 2014, 68 (01) : 93 - 103
  • [23] AFFINE ISOPARAMETRIC HYPERSURFACES
    NIEBERGALL, R
    RYAN, PJ
    MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (03) : 479 - 485
  • [24] Symplectic rigidity for Anosov hypersurfaces
    Burns, D.
    Hind, R.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 : 1399 - 1416
  • [25] On characteristics of hypersurfaces in symplectic manifolds
    Banyaga, Augustin
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [26] Symplectic geometry
    Siegel, CL
    AMERICAN JOURNAL OF MATHEMATICS, 1943, 65 : 1 - 86
  • [27] SYMPLECTIC GEOMETRY
    不详
    CURRENT SCIENCE, 1965, 34 (20): : 594 - &
  • [28] AFFINE MINIMAL HYPERSURFACES OF ROTATION
    KRAUTER, P
    GEOMETRIAE DEDICATA, 1994, 51 (03) : 287 - 303
  • [29] EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES
    Chen, Bang-Yen
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (01): : 33 - 44
  • [30] ON LOCALLY SYMMETRICAL AFFINE HYPERSURFACES
    SCHARLACH, C
    VRANCKEN, L
    ARCHIV DER MATHEMATIK, 1994, 63 (04) : 368 - 376