Simulation of registration accuracy of ICP(Iterative Closest Point) method for pose estimation

被引:4
|
作者
Fei, Wang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun, Peoples R China
关键词
registration accuracy; pose estimation; iterative closet point; 3D imaging lidar;
D O I
10.4028/www.scientific.net/AMM.475-476.401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
ICP method is a powerful tool widely used in 3D point registration and pose estimation application. But there lacks an deterministic relation between the 3D point dataset and the model. Here we present some Monte Carlo simulation results for pose estimation error of one degree and the system requirement for lidar 3D point measurement techniques.
引用
收藏
页码:401 / 404
页数:4
相关论文
共 50 条
  • [41] Precise iterative closest point algorithm with corner point constraint for isotropic scaling registration
    Du, Shaoyi
    Cui, Wenting
    Wu, Liyang
    Zhang, Sirui
    Zhang, Xuetao
    Xu, Guanglin
    Xu, Meifeng
    MULTIMEDIA SYSTEMS, 2019, 25 (02) : 119 - 126
  • [42] Precise iterative closest point algorithm with corner point constraint for isotropic scaling registration
    Shaoyi Du
    Wenting Cui
    Liyang Wu
    Sirui Zhang
    Xuetao Zhang
    Guanglin Xu
    Meifeng Xu
    Multimedia Systems, 2019, 25 : 119 - 126
  • [43] A Modified Iterative Closest Point Algorithm for 3D Point Cloud Registration
    Marani, Roberto
    Reno, Vito
    Nitti, Massimiliano
    D'Orazio, Tiziana
    Stella, Ettore
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2016, 31 (07) : 515 - 534
  • [44] Scaling iterative closest point algorithm for registration of m-D point sets
    Du, Shaoyi
    Zheng, Nanning
    Xiong, Lei
    Ying, Shihui
    Xue, Jianru
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (5-6) : 442 - 452
  • [45] A Fast Egomotion Estimation Method based on Visual Feature Tracking and Iterative Closest Point
    Hong, Soonhac
    Ye, Cang
    2014 IEEE 11TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC), 2014, : 114 - 119
  • [46] CICP: Cluster Iterative Closest Point for sparse-dense point cloud registration
    Tazir, M. Lamine
    Gokhool, Tawsif
    Checchin, Paul
    Malaterre, Laurent
    Trassoudaine, Laurent
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 108 : 66 - 86
  • [47] BO-ICP: Initialization of Iterative Closest Point Based on Bayesian Optimization
    Biggie, Harel
    Beathard, Andrew
    Heckman, Christoffer
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6944 - 6950
  • [48] The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm
    Ramazan Alper Kuçak
    Serdar Erol
    Bihter Erol
    Arabian Journal of Geosciences, 2022, 15 (11)
  • [49] Surface-based 3-D image registration using the Iterative Closest Point algorithm with a closest point transform
    Ge, YR
    Maurer, CR
    Fitzpatrick, JM
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 358 - 367
  • [50] Probability iterative closest point algorithm for m-D point set registration with noise
    Du, Shaoyi
    Liu, Juan
    Zhang, Chunjia
    Zhu, Jihua
    Li, Ke
    NEUROCOMPUTING, 2015, 157 : 187 - 198