Cost-Sensitive Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classification

被引:40
|
作者
Persello, Claudio [1 ,2 ]
Boularias, Abdeslam [3 ]
Dalponte, Michele [4 ]
Gobakken, Terje [5 ]
Naesset, Erik [5 ]
Schoelkopf, Bernhard [1 ]
机构
[1] Max Planck Inst Intelligent Syst, Dept Empir Inference, D-72076 Tubingen, Germany
[2] Univ Trent, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
[3] Carnegie Mellon Univ, Pittsburgh, PA 15201 USA
[4] Edmund Mach Fdn, I-38010 San Michele All Adige, Italy
[5] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, N-1432 As, Norway
来源
关键词
Active learning (AL); field surveys; forest inventories; hyperspectral data; image classification; Markov decision process (MDP); support vector machine (SVM); TREE SPECIES CLASSIFICATION; HYPERSPECTRAL DATA; FOREST; LEAF;
D O I
10.1109/TGRS.2014.2300189
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Active learning typically aims at minimizing the number of labeled samples to be included in the training set to reach a certain level of classification accuracy. Standard methods do not usually take into account the real annotation procedures and implicitly assume that all samples require the same effort to be labeled. Here, we consider the case where the cost associated with the annotation of a given sample depends on the previously labeled samples. In general, this is the case when annotating a queried sample is an action that changes the state of a dynamic system, and the cost is a function of the state of the system. In order to minimize the total annotation cost, the active sample selection problem is addressed in the framework of a Markov decision process, which allows one to plan the next labeling action on the basis of an expected long-term cumulative reward. This framework allows us to address the problem of optimizing the collection of labeled samples by field surveys for the classification of remote sensing data. The proposed method is applied to the ground sample collection for tree species classification using airborne hyperspectral images. Experiments carried out in the context of a real case study on forest inventory show the effectiveness of the proposed method.
引用
收藏
页码:6652 / 6664
页数:13
相关论文
共 50 条
  • [11] Optimizing F-Measures by Cost-Sensitive Classification
    Parambath, Shameem A. Puthiya
    Usunier, Nicolas
    Grandvalet, Yves
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [12] OPTIMIZING THE GROUND SAMPLE COLLECTION WITH COST-SENSITIVE ACTIVE LEARNING FOR TREE SPECIES CLASSIFICATION USING HYPERSPECTRAL IMAGES
    Persello, Claudio
    Dalponte, Michele
    Gobakken, Terje
    Naesset, Erik
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2091 - 2094
  • [13] Cost-sensitive classification with inadequate labeled data
    Wang, Tao
    Qin, Zhenxing
    Zhang, Shichao
    Zhang, Chengqi
    INFORMATION SYSTEMS, 2012, 37 (05) : 508 - 516
  • [14] A Cost-sensitive Active Learning for Imbalance Data with Uncertainty and Diversity Combination
    Dong, Huailong
    Zhu, Bowen
    Zhang, Jing
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 218 - 224
  • [15] Cost-sensitive boosting for classification of imbalanced data
    Sun, Yamnin
    Kamel, Mohamed S.
    Wong, Andrew K. C.
    Wang, Yang
    PATTERN RECOGNITION, 2007, 40 (12) : 3358 - 3378
  • [16] Multimetric Active Learning for Classification of Remote Sensing Data
    Zhang, Zhou
    Pasolli, Edoardo
    Yang, Hsiuhan Lexie
    Crawford, Melba M.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (07) : 1007 - 1011
  • [17] Cost-Sensitive Active Visual Category Learning
    Vijayanarasimhan, Sudheendra
    Grauman, Kristen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 91 (01) : 24 - 44
  • [18] Cost-Sensitive Active Visual Category Learning
    Sudheendra Vijayanarasimhan
    Kristen Grauman
    International Journal of Computer Vision, 2011, 91 : 24 - 44
  • [19] Cost-sensitive learning for imbalanced data streams
    Loezer, Lucas
    Enembreck, Fabricio
    Barddal, Jean Paul
    Britto Jr, Alceu de Souza
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 498 - 504
  • [20] Cost-Sensitive Learning Methods for Imbalanced Data
    Nguyen Thai-Nghe
    Gantner, Zeno
    Schmidt-Thieme, Lars
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,