Correcting for cell-type composition bias in epigenome-wide association studies

被引:19
|
作者
Lowe, Robert [1 ]
Rakyan, Vardhman K. [1 ]
机构
[1] Queen Mary Univ London, Barts & London Sch Med & Dent, Blizard Inst, London E1 2AT, England
来源
GENOME MEDICINE | 2014年 / 6卷
关键词
DNA METHYLATION;
D O I
10.1186/gm540
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recent epigenome-wide association studies have indicated a potential role for epigenetic variation in the etiology of complex human diseases. However, one major challenge is to distinguish true epigenetic variation from changes caused by differences in cellular composition between the disease and non-disease state, a problem that is particularly relevant when analyzing whole blood. For studies with large numbers of samples, it can be expensive and very time consuming to perform cell sorting, and it is often not clear which is the correct cell type to profile. Two recently published papers have attempted to address this confounding issue using bioinformatics.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Estimation of a significance threshold for epigenome-wide association studies
    Saffari, Ayden
    Silver, Matt J.
    Zavattari, Patrizia
    Moi, Loredana
    Columbano, Amedeo
    Meaburn, Emma L.
    Dudbridge, Frank
    GENETIC EPIDEMIOLOGY, 2018, 42 (01) : 20 - 33
  • [22] Recommendations for the design and analysis of epigenome-wide association studies
    Michels, Karin B.
    Binder, Alexandra M.
    Dedeurwaerder, Sarah
    Epstein, Charles B.
    Greally, John M.
    Gut, Ivo
    Houseman, E. Andres
    Izzi, Benedetta
    Kelsey, Karl T.
    Meissner, Alexander
    Milosavljevic, Aleksandar
    Siegmund, Kimberly D.
    Bock, Christoph
    Irizarry, Rafael A.
    NATURE METHODS, 2013, 10 (10) : 949 - 955
  • [23] Recommendations for the design and analysis of epigenome-wide association studies
    Karin B Michels
    Alexandra M Binder
    Sarah Dedeurwaerder
    Charles B Epstein
    John M Greally
    Ivo Gut
    E Andres Houseman
    Benedetta Izzi
    Karl T Kelsey
    Alexander Meissner
    Aleksandar Milosavljevic
    Kimberly D Siegmund
    Christoph Bock
    Rafael A Irizarry
    Nature Methods, 2013, 10 : 949 - 955
  • [24] Epigenome-wide association studies for common human diseases
    Vardhman K. Rakyan
    Thomas A. Down
    David J. Balding
    Stephan Beck
    Nature Reviews Genetics, 2011, 12 : 529 - 541
  • [25] Epigenome-wide association studies of allergic disease and the environment
    Cardenas, Andres
    Fadadu, Raj P.
    Koppelman, Gerard H.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2023, 152 (03) : 582 - 590
  • [26] Epigenome-wide association studies for common human diseases
    Rakyan, Vardhman K.
    Down, Thomas A.
    Balding, David J.
    Beck, Stephan
    NATURE REVIEWS GENETICS, 2011, 12 (08) : 529 - 541
  • [27] Epigenome-wide Association Studies and the Interpretation of Disease -Omics
    Birney, Ewan
    Smith, George Davey
    Greally, John M.
    PLOS GENETICS, 2016, 12 (06):
  • [28] Detection of cell-type-specific risk-CpG sites in epigenome-wide association studies
    Luo, Xiangyu
    Yang, Can
    Wei, Yingying
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [29] Detection of cell-type-specific risk-CpG sites in epigenome-wide association studies
    Xiangyu Luo
    Can Yang
    Yingying Wei
    Nature Communications, 10
  • [30] Fast and robust adjustment of cell mixtures in epigenome-wide association studies with SmartSVA
    Jun Chen
    Ehsan Behnam
    Jinyan Huang
    Miriam F. Moffatt
    Daniel J. Schaid
    Liming Liang
    Xihong Lin
    BMC Genomics, 18