Reversible nilpotent centers with cubic homogeneous nonlinearities

被引:3
|
作者
Dukaric, Masa [1 ]
Gine, Jaume [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
[2] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain
[3] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
关键词
Two dimensional differential systems; Nilpotent centers; Cubic polynomial differential systems; Phase portrait; POLYNOMIAL VECTOR-FIELDS; ANALYTIC INTEGRABILITY; SYSTEMS; FOCUS;
D O I
10.1016/j.jmaa.2015.07.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide 13 non-topological equivalent classes of global phase portraits in the Poincare disk of reversible cubic homogeneous systems with a nilpotent center at origin, which complete the classification of the phase portraits of the nilpotent centers with cubic homogeneous nonlinearities. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:305 / 319
页数:15
相关论文
共 50 条
  • [1] Nilpotent Global Centers of Linear Systems with Cubic Homogeneous Nonlinearities
    Garcia-Saldana, J. D.
    Llibre, Jaume
    Valls, Claudia
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [2] Global nilpotent reversible centers with cubic nonlinearities symmetric with respect to the y-axis
    Corbera, Montserrat
    Valls, Claudia
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024,
  • [3] Global Nilpotent Reversible Centers with Cubic Nonlinearities Symmetric with Respect to the x-Axis
    Corbera, Montserrat
    Valls, Claudia
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [4] Linear type global centers of linear systems with cubic homogeneous nonlinearities
    Johanna D. García-Saldaña
    Jaume Llibre
    Claudia Valls
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 771 - 785
  • [5] Linear type global centers of linear systems with cubic homogeneous nonlinearities
    Garcia-Saldana, Johanna D.
    Llibre, Jaume
    Valls, Claudia
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 771 - 785
  • [6] Nilpotent centers of cubic systems
    A. F. Andreev
    I. A. Andreeva
    L. V. Detchenya
    T. V. Makovetskaya
    A. P. Sadovskii
    [J]. Differential Equations, 2017, 53 : 975 - 980
  • [7] Nilpotent saddles of linear plus cubic homogeneous polynomial reversible vector fields
    Corbera, Montserrat
    Valls, Claudia
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 162
  • [8] Nilpotent centers of cubic systems
    Andreev, A. F.
    Andreeva, I. A.
    Detchenya, L. V.
    Makovetskaya, T. V.
    Sadovskii, A. P.
    [J]. DIFFERENTIAL EQUATIONS, 2017, 53 (08) : 975 - 980
  • [9] Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields
    Colak, Ilker E.
    Llibre, Jaume
    Valls, Claudia
    [J]. ADVANCES IN MATHEMATICS, 2014, 259 : 655 - 687
  • [10] 1:-3 resonant centers on C2 with homogeneous cubic nonlinearities
    Hu, Zhaoping
    Romanovski, Valery G.
    Shafer, Douglas S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 1927 - 1940