Nilpotent centers of cubic systems

被引:3
|
作者
Andreev, A. F. [1 ]
Andreeva, I. A. [2 ]
Detchenya, L. V. [3 ]
Makovetskaya, T. V. [4 ]
Sadovskii, A. P. [4 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] Peter Great Polytech Univ, St Petersburg 195251, Russia
[3] Yanka Kupala State Univ Grodno, Grodno 230023, BELARUS
[4] Belarusian State Univ, Minsk 220030, BELARUS
关键词
CENTER-FOCUS PROBLEM;
D O I
10.1134/S0012266117080018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an explicit form of cubic systems with a nilpotent singular point of the focus or center type at the origin. A method for finding the focus quantities of such systems is indicated. Sufficient conditions for the existence of a nilpotent center for cubic systems are given. Cubic systems reducible to the LiA ' enard system are studied in detail.
引用
收藏
页码:975 / 980
页数:6
相关论文
共 50 条
  • [1] Nilpotent centers of cubic systems
    A. F. Andreev
    I. A. Andreeva
    L. V. Detchenya
    T. V. Makovetskaya
    A. P. Sadovskii
    Differential Equations, 2017, 53 : 975 - 980
  • [2] On the Global Nilpotent Centers of Cubic Polynomial Hamiltonian Systems
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 32 (4) : 1001 - 1011
  • [3] Nilpotent Global Centers of Linear Systems with Cubic Homogeneous Nonlinearities
    Garcia-Saldana, J. D.
    Llibre, Jaume
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [4] Reversible nilpotent centers with cubic homogeneous nonlinearities
    Dukaric, Masa
    Gine, Jaume
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (01) : 305 - 319
  • [5] Nondegenerate and Nilpotent Centers for a Cubic System of Differential Equations
    Antonio Algaba
    Cristóbal García
    Jaume Giné
    Qualitative Theory of Dynamical Systems, 2019, 18 : 333 - 345
  • [6] Nondegenerate and Nilpotent Centers for a Cubic System of Differential Equations
    Algaba, Antonio
    Garcia, Cristobal
    Gine, Jaume
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (01) : 333 - 345
  • [7] Nilpotent Centers of a Cubic System Reducible to a Nonlinear Vibration System
    Detchenya, L. V.
    Sadovskii, A. P.
    DIFFERENTIAL EQUATIONS, 2019, 55 (12) : 1665 - 1670
  • [8] Nilpotent Centers of a Cubic System Reducible to a Nonlinear Vibration System
    L. V. Detchenya
    A. P. Sadovskii
    Differential Equations, 2019, 55 : 1665 - 1670
  • [9] Analytic integrability of a class of nilpotent cubic systems
    Chavarriga, J
    Giné, J
    Sorolla, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 59 (06) : 489 - 495
  • [10] CENTERS OF SOME CUBIC SYSTEMS
    Valery G. ROMANOVSKI (Center for Applied Math. and Theoretical Physics
    Annals of Applied Mathematics, 2001, (04) : 363 - 376