An evolution strategy with probabilistic mutation for multi-objective optimisation

被引:0
|
作者
Huband, S [1 ]
Hingston, P [1 ]
While, L [1 ]
Barone, L [1 ]
机构
[1] Edith Cowan Univ, Sch Comp & Informat Sci, Mt Lawley, WA 6050, Australia
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Evolutionary algorithms have been applied with great success to the difficult field of multi-objective optimisation. Nevertheless, the need for improvements in this field is still strong. We present a new evolutionary algorithm, ESP (the Evolution Strategy with Probabilistic mutation). ESP extends traditional evolution strategies in two principal ways: it applies mutation probabilistically in a GA-like fashion, and it uses a new hyper-volume based, parameterless, scaling independent measure for resolving ties during the selection process. ESP outperforms the state-of-the-art algorithms on a suite of benchmark multi-objective test functions using a range of popular metrics.
引用
收藏
页码:2284 / 2291
页数:8
相关论文
共 50 条
  • [1] Multi-objective evolution strategy for multimodal multi-objective optimization
    Zhang, Kai
    Chen, Minshi
    Xu, Xin
    Yen, Gary G.
    [J]. APPLIED SOFT COMPUTING, 2021, 101
  • [2] Multi-objective differential evolution based on normalization and improved mutation strategy
    Noor H. Awad
    Mostafa Z. Ali
    Rehab M. Duwairi
    [J]. Natural Computing, 2017, 16 : 661 - 675
  • [3] Multi-objective differential evolution based on normalization and improved mutation strategy
    Awad, Noor H.
    Ali, Mostafa Z.
    Duwairi, Rehab M.
    [J]. NATURAL COMPUTING, 2017, 16 (04) : 661 - 675
  • [4] Efficient multi-objective optimisation of probabilistic service life management
    Kim, Sunyong
    Frangopol, Dan M.
    [J]. STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2017, 13 (01) : 147 - 159
  • [5] Multi-objective optimisation
    Bortfeld, T.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S72 - S73
  • [6] A hybrid differential evolution for multi-objective optimisation problems
    Song, Erping Song
    Li, Hecheng
    [J]. CONNECTION SCIENCE, 2022, 34 (01) : 224 - 253
  • [7] A Natural Evolution Strategy for Multi-objective Optimization
    Glasmachers, Tobias
    Schaul, Tom
    Schmidhuber, Juergen
    [J]. PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 627 - 636
  • [8] Multi-objective mixed integer strategy for the optimisation of biological networks
    Sendin, J. O. H.
    Exler, O.
    Banga, J. R.
    [J]. IET SYSTEMS BIOLOGY, 2010, 4 (03) : 236 - 248
  • [9] Prototype selection based on multi-objective optimisation and partition strategy
    Li, Juan
    Wang, Yuping
    [J]. INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2015, 17 (03) : 163 - 176
  • [10] A Hybrid Multi-objective Extremal Optimisation Approach for Multi-objective Combinatorial Optimisation Problems
    Gomez-Meneses, Pedro
    Randall, Marcus
    Lewis, Andrew
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,