A hybrid differential evolution for multi-objective optimisation problems

被引:7
|
作者
Song, Erping Song [1 ]
Li, Hecheng [2 ,3 ]
机构
[1] Qinghai Normal Univ, Sch Comp Sci & Technol, Xining 810016, Peoples R China
[2] Qinghai Normal Univ, Sch Math & Stat, Xining, Peoples R China
[3] Acad Plateau Sci & Sustainabil, Xining, Peoples R China
基金
中国国家自然科学基金;
关键词
Differential evolution; heuristic crossover; local optimal; external archive; ALGORITHM;
D O I
10.1080/09540091.2021.1984396
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to effectively use differential evolution (DE) to solve multi-objective optimisation problems, it is necessary to consider how to ensure the search ability of DE. However, the search ability of DE is affected by related parameters and mutation mode. Based on decomposition, this paper proposed a hybrid differential evolution (HMODE/D) for solving multi-objective optimisation problems. First, when generation satisfies a certain condition, the local optimum is selected using the information of neighbour individual objective values to produce mutation offspring. Then, the heuristic crossover operator is established by using a uniform design method to produce better crossover individuals. Next, an external archive is set for each individual to store the individuals beneficial to the optimisation objective functions. Then, the individual is selected from the external archive to generate mutation offspring. In addition, considering that the performance of DE is determined by parameters, using the relevant information of the objective space function value, the self-adaptive adjustment strategy is adopted for the relevant parameter. Finally, a series of test functions with 5-, 10-, and 15-objectives are performed in the experiments to evaluate the superiority of HMODE/D. The results show that HMODE/D can solve the multi-objective optimisation problem very well.
引用
收藏
页码:224 / 253
页数:30
相关论文
共 50 条
  • [1] A Hybrid Multi-objective Extremal Optimisation Approach for Multi-objective Combinatorial Optimisation Problems
    Gomez-Meneses, Pedro
    Randall, Marcus
    Lewis, Andrew
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [2] Differential Evolution Multi-objective Optimisation for Chemotherapy Treatment Planning
    Szlachcic, Ewa
    Klempous, Ryszard
    [J]. COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 471 - 478
  • [3] Differential Evolution for Multi-Modal Multi-Objective Problems
    Pal, Monalisa
    Bandyopadhyay, Sanghamitra
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1399 - 1406
  • [4] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Iraq Tariq
    H. A. AlSattar
    A. A. Zaidan
    B. B. Zaidan
    M. R. Abu Bakar
    R. T. Mohammed
    O. S. Albahri
    M. A. Alsalem
    A. S. Albahri
    [J]. Neural Computing and Applications, 2020, 32 : 3101 - 3115
  • [5] MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
    Tariq, Iraq
    AlSattar, H. A.
    Zaidan, A. A.
    Zaidan, B. B.
    Abu Bakar, M. R.
    Mohammed, R. T.
    Albahri, O. S.
    Alsalem, M. A.
    Albahri, A. S.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (08): : 3101 - 3115
  • [6] Hybrid multi-objective differential evolution (H-MODE) for optimisation of polyethylene terephthalate (PET) reactor
    Gujarathi, Ashish M.
    Babu, B. V.
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (3-4) : 213 - 221
  • [7] A modified differential evolution algorithm for multi-objective optimization problems
    Tang Ke-zong
    Sun Ting-kai
    Yang Jing-yu
    Gao Shang
    [J]. PROCEEDINGS OF THE 2009 CHINESE CONFERENCE ON PATTERN RECOGNITION AND THE FIRST CJK JOINT WORKSHOP ON PATTERN RECOGNITION, VOLS 1 AND 2, 2009, : 15 - +
  • [8] An Improved Differential Evolution for Constrained Multi-objective Optimization Problems
    Song, Erping
    Li, Hecheng
    Wanma, Cuo
    [J]. 2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 269 - 273
  • [9] Multi-objective Optimization Using a Hybrid Differential Evolution Algorithm
    Wang, Xianpeng
    Tang, Lixin
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [10] Improved multi-objective differential evolution algorithm based on a decomposition strategy for multi-objective optimization problems
    Mingwei Fan
    Jianhong Chen
    Zuanjia Xie
    Haibin Ouyang
    Steven Li
    Liqun Gao
    [J]. Scientific Reports, 12