Legal Judgment Prediction with Label Dependencies

被引:0
|
作者
Chen, Long [1 ]
Xu, Nuo [1 ]
Wang, Yue [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Intelligent Networks & Network Secur, Fac Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Judgment prediction; LJP; dependency; multitask;
D O I
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Legal Judgment Prediction (LJP) is a key technique for social fair. It aims to predict the judicial decisions automatically given the fact description and has great prospects in judicial assistance and management. This article focuses on the prediction of criminal judgment and proposes a legal domainoriented method for the LJP task, by exploiting the dependencies of labels across tasks of LJP. The proposed method captures the dependencies by a prediction forward-propagate mechanism over a directed heterogeneous graph, and a novel prediction task, attribute prediction. The experiments prove the efficiency of the method and show the superior of our model on real-world datasets.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [31] Improving legal judgment prediction through reinforced criminal element extraction
    Lyu, Yougang
    Wang, Zihan
    Ren, Zhaochun
    Ren, Pengjie
    Chen, Zhumin
    Liu, Xiaozhong
    Li, Yujun
    Li, Hongsong
    Song, Hongye
    Information Processing and Management, 2022, 59 (01):
  • [32] Legal Judgment Prediction in the Context of Energy Market using Gradient Boosting
    Franca, Joao V. F.
    Boaro, Jose M. C.
    dos Santos, Pedro T. C.
    Henrique, Fernando
    Garcia, Venicius
    Manfredini, Caio
    Junior, Domingos A. D.
    de Oliveira, Francisco Y. C.
    Castro, Carlos E. P.
    Braz Junior, Geraldo
    Silva, Aristofanes C.
    Paiva, Anselmo C.
    de Oliveira, Milton S. L.
    Moreira e Moraes, Renato U.
    Alves, Erika W. B. A. L.
    Sobral Neto, Jose S.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 875 - 880
  • [33] MJP: A Meta-learning Approach for Chinese Legal Judgment Prediction
    Lang, Yuying
    Hou, Hongxu
    Chen, Wei
    Sun, Shuo
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT IV, NLPCC 2024, 2025, 15362 : 16 - 27
  • [34] Legal Judgment Prediction via Heterogeneous Graphs and Knowledge of Law Articles
    Zhao, Qihui
    Gao, Tianhan
    Zhou, Song
    Li, Dapeng
    Wen, Yingyou
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [35] Distinguish Confusion in Legal Judgment Prediction via Revised Relation Knowledge
    Xu, Nuo
    Wang, Pinghui
    Zhao, Junzhou
    Sun, Feiyang
    Lan, Lin
    Tao, Jing
    Pan, Li
    Guan, Xiaohong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 43 (01)
  • [36] A Circumstance-Aware Neural Framework for Explainable Legal Judgment Prediction
    Yue, Linan
    Liu, Qi
    Jin, Binbin
    Wu, Han
    An, Yanqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5453 - 5467
  • [37] Exploiting Contrastive Learning and Numerical Evidence for Confusing Legal Judgment Prediction
    Gan, Leilei
    Li, Baokui
    Kuang, Kun
    Zhang, Yating
    Wang, Lei
    Tuan, Luu Anh
    Yang, Yi
    Wu, Fei
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 12174 - 12185
  • [38] Prompt4LJP: prompt learning for legal judgment prediction
    Huang, Qiongyan
    Xia, Yuhan
    Long, Yunfei
    Fang, Hui
    Liang, Ruiwei
    Guan, Yin
    Xu, Ge
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [39] Improving legal judgment prediction through reinforced criminal element extraction
    Lyu, Yougang
    Wang, Zihan
    Ren, Zhaochun
    Ren, Pengjie
    Chen, Zhumin
    Liu, Xiaozhong
    Li, Yujun
    Li, Hongsong
    Song, Hongye
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (01)
  • [40] Interpretable legal judgment prediction based on improved conditional classification tree
    Yang, Huan
    Deng, Wei
    Wang, Guoyin
    Wang, Fang
    Li, Shuang
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 336 - 343