Channel Estimation in C-V2X using Deep Learning

被引:7
|
作者
Sattiraju, Raja [1 ]
Weinand, Andreas [1 ]
Schotten, Hans D. [1 ]
机构
[1] Univ Kaiserslautern, Chair Wireless Commun & Nav, Kaiserslautern, Germany
关键词
D O I
10.1109/ants47819.2019.9117972
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Channel estimation forms one of the central component in current Orthogonal Frequency Division Multiplexing (OFDM) systems that aims to eliminate the inter-symbol interference by calculating the Channel State Information (CSI) using the pilot symbols and interpolating them across the entire time-frequency grid. It is also one of the most researched field in the Physical Layer (PHY) with Least-Squares (LS) and Minimum Mean Squared Error (MMSE) being the two most used methods. In this work, we investigate the performance of deep neural network architecture based on Convolutional Neural Networks (CNNs) for channel estimation in vehicular environments used in 3GPP Rel.14 Cellular-Vehicle-to-Everything (C-V2X) technology. To this end, we compare the performance of the proposed Deep Learning (DL) architectures to the legacy LS channel estimation currently employed in C-V2X. Initial investigations prove that the proposed DL architecture outperform the legacy C-V2X channel estimation methods especially at high mobile speeds.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] C-V2X技术演变与研究
    宋爱慧
    赵慧麟
    孙向前
    廖臻
    通信世界, 2021, (21) : 35 - 36
  • [32] A Markov Perspective on C-V2X Mode 4
    Wijesiri, Geeth P. N. B. A.
    Haapola, Jussi
    Samarasinghe, Tharaka
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [33] C-V2X Solution for SPAT Application and Maintenance
    Miao, Lili
    Chien, Shih-Che
    Chang, Feng-Chia
    Hua, Kai-Lung
    2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, : 405 - 406
  • [34] On Wireless Blind Spots in the C-V2X Sidelink
    Bazzi, Alessandro
    Campolo, Claudia
    Molinaro, Antonella
    Berthet, Antoine O.
    Masini, Barbara M.
    Zanella, Alberto
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9239 - 9243
  • [35] Multi-Agent Reinforcement Learning for Channel Assignment and Power Allocation in Platoon-Based C-V2X Systems
    Vu, Hung V.
    Farzanullah, Mohammad
    Liu, Zheyu
    Nguyen, Duy H. N.
    Morawski, Robert
    Le-Ngoc, Tho
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [36] A Research Trends of Reinforcement Learning Algorithms for C-V2X Network Resource Allocation
    Hong, Seonghun
    Kim, Jaemin
    Kim, Gahyun
    Cho, Sungrae
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 61 - 63
  • [37] 5G C-V2X Filter Using BAW Technology
    Karnati, Kalyan
    Schaefer, Michael
    Yusuf, Waleed
    Rothemund, Ralph
    Al-Joumayly, Mudar
    Fattinger, Gernot
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE FILTER WORKSHOP (IMFW), 2021, : 109 - 111
  • [38] Modeling of NR C-V2X Mode 2 Throughput
    Brady, Collin
    Cao, Liu
    Roy, Sumit
    2022 IEEE INTERNATIONAL WORKSHOP ON COMMUNICATIONS QUALITY AND RELIABILITY (IEEE CQR), 2022, : 19 - 24
  • [39] C-V2X切片随机接入技术
    杨保峰
    宋健
    沈庆国
    移动通信, 2021, 45 (06) : 27 - 36
  • [40] Building mmWave on the evolving C-V2X: MmWave NR-V2X
    Chen, Shanzhi
    He, Xinxin
    Zhao, Rui
    Hu, Jinling
    Zhang, Xin
    CHINA COMMUNICATIONS, 2024, 21 (01) : 88 - 101