Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research

被引:10
|
作者
Loda, Sophia [1 ]
Krebs, Jonathan [2 ]
Danhof, Sophia [1 ]
Schreder, Martin [3 ]
Solimando, Antonio G. [4 ]
Strifler, Susanne [1 ]
Rasche, Leo [1 ]
Kortuem, Martin [1 ]
Kerscher, Alexander [5 ]
Knop, Stefan [1 ]
Puppe, Frank [2 ]
Einsele, Hermann [1 ]
Bittrich, Max [1 ]
机构
[1] Univ Hosp Wurzburg, Dept Internal Med 2, D-97080 Wurzburg, Germany
[2] Univ Wurzburg, Chair Artificial Intelligence & Appl Informat, D-97070 Wurzburg, Germany
[3] Wilheminen Hosp, Med Dept 1, A-1160 Vienna, Austria
[4] Univ Bari, Med Sch Bari, Sect Internal Med G Baccelli, Dept Biomed Sci & Human Oncol, I-70124 Bari, Italy
[5] Comprehens Canc Ctr, D-97080 Wurzburg, Germany
来源
JOURNAL OF CLINICAL MEDICINE | 2019年 / 8卷 / 07期
关键词
natural language processing; ontology; artificial intelligence; multiple myeloma; real world evidence; INFORMATION EXTRACTION; ONCOLOGY; CLASSIFICATION; GENERATION;
D O I
10.3390/jcm8070999
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented A Rule-based Information Extraction System (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The use of digital pathology and artificial intelligence in the assessment of multiple myeloma
    McCabe, M.
    Sheehan, K.
    Glavey, S.
    [J]. VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S79 - S79
  • [2] Artificial intelligence-based application in multiple myeloma
    Piscopo, Leandra
    Scaglione, Mariano
    Klain, Michele
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 (07) : 1923 - 1925
  • [3] Artificial Intelligence Individualized Risk Classifier in Multiple Myeloma
    Neri, Paola
    Lee, Holly
    Bahlis, Nizar J.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (11)
  • [4] Use of generative artificial intelligence in medical research
    Islam, Nazrul
    van der Schaar, Mihaela
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2024, 384
  • [5] Public perceptions of the use of artificial intelligence in Defence: a qualitative exploration
    Hadlington, Lee
    Karanika-Murray, Maria
    Slater, Jane
    Binder, Jens
    Gardner, Sarah
    Knight, Sarah
    [J]. AI & SOCIETY, 2024,
  • [6] Advanced Research Interplanetary Exploration Ship (ARIES)
    Mullenniex, TK
    [J]. SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-2001, 2001, 552 : 991 - 994
  • [7] Artificial intelligence in education: an exploration
    Cumming, G
    [J]. JOURNAL OF COMPUTER ASSISTED LEARNING, 1998, 14 (04) : 251 - 259
  • [8] Research and Exploration of Artificial Intelligence in Product Design in the Era of Intelligent Interconnection
    Lv, Ming
    Li, Zimeng
    Guo, Cen
    [J]. FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE IOT ERA (FONES-IOT 2021), VOL 1, 2022, 129 : 318 - 323
  • [9] RESPONSIBLE AND ETHICAL USE OF ARTIFICIAL INTELLIGENCE IN RESEARCH AND PUBLISHING
    Pinchuk, Olha
    Malytska, Iryna
    [J]. INFORMATION TECHNOLOGIES AND LEARNING TOOLS, 2024, 100 (02) : 180 - 198
  • [10] Communicating the use of artificial intelligence in agricultural and environmental research
    Daigh, Aaron Lee M.
    Daroub, Samira H.
    Kyveryga, Peter M.
    Sorrells, Mark E.
    Rajan, Nithya
    Ippolito, James A.
    Kailer, Endy
    Booth, Christine S.
    Acharya, Umesh
    Ghimire, Deepak
    Das, Saurav
    Maharjan, Bijesh
    Ge, Yufeng
    [J]. AGRICULTURAL & ENVIRONMENTAL LETTERS, 2024, 9 (02)