Regularity of weak solutions to obstacle problems for nondiagonal quasilinear degenerate elliptic systems

被引:2
|
作者
Du, Guangwei [1 ]
Zhang, Kelei [2 ,3 ]
Dong, Yan [4 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
[2] Guilin Univ Elect Technol, Guangxi Coll, Sch Math & Comp Sci, Guilin, Peoples R China
[3] Guilin Univ Elect Technol, Univ Key Lab Data Anal & Computat, Guilin, Peoples R China
[4] Hubei Univ Econ, Dept Appl Math, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Nondiagonal quasilinear degenerate elliptic system; Obstacle problem; Morrey regularity; Holder continuity; INTERIOR REGULARITY; COEFFICIENTS; EQUATIONS; GROWTH;
D O I
10.1186/s13660-019-2135-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X={X1, ... ,Xm} be a system of smooth real vector fields satisfying Hormander's rank condition. We consider the interior regularity of weak solutions to an obstacle problem associated with the nonhomogeneous nondiagonal quasilinear degenerate elliptic system X alpha* (A(ij)(alpha beta) (x, u)X(beta)u(j)) = B-i( x, u, Xu) + X-alpha*g(i)(alpha) (x, u, Xu). After proving the higher integrability and a Campanato type estimate for the weak solutions to the obstacle problem for the homogeneous nondiagonal quasilinear degenerate elliptic system, the interior Morrey regularity and Holder continuity of weak solutions to the obstacle problem for the nonhomogeneous system are obtained.
引用
收藏
页数:16
相关论文
共 50 条