Regularity results for quasilinear degenerate elliptic obstacle problems in Carnot groups

被引:1
|
作者
Du, Guangwei [1 ]
Niu, Pengcheng [1 ]
Han, Junqiang [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Carnot group; quasilinear degenerate elliptic obstacle problem; C-X(O; alpha); regularity; C-X(1; P-HARMONIC FUNCTIONS; INTERIOR REGULARITY; WEAK SOLUTIONS; VECTOR-FIELDS; EQUATIONS; SPACES; OPERATORS; GRADIENT; SYSTEMS;
D O I
10.4171/RSMUP/15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X-1 ,..., X-m} be a basis of the space of horizontal vector fields on the Carnot group G = (R-N, circle)(m < N). We establish regularity results for solutions to the following quasilinear degenerate elliptic obstacle problem integral(Omega) << AXu , Xu > (p-2/2) AXu, X( v - u )> dx >= integral(Omega) B(x, u, Xu)(v - u)dx + integral(Omega) < f(x), X(v - u)> dx, for all v is an element of K-psi(theta)(Omega), where A = (aij (x))(mxm) is a symmetric positive-definite matrix with measurable coefficients, p is close to 2, K-psi(theta)(Omega) = { V is an element of HW1.P(Omega): v >= psi a.e. in Omega, v - theta is an element of HWO1.P (Omega)}, psi is a given obstacle function theta is a boundary value function with theta >= psi. We first prove the C-X(O,alpha) regularity of solutions provided that the coefficients of A are of vanishing mean oscillation (VMO). Then the C-X(1,alpha) a regularity of solutions is obtained if the coefficients belong to the class BMO omega which is a proper subset of VMO.
引用
收藏
页码:65 / 105
页数:41
相关论文
共 50 条