MAXIMAL ESTIMATES FOR THE KRAMERS-FOKKER-PLANCK OPERATOR WITH ELECTROMAGNETIC FIELD

被引:0
|
作者
Helffer, Bernard [1 ]
Karaki, Zeinab [1 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
来源
关键词
Fokker-Planck equation; magnetic field; electric potential; Lie algebra; irreducible representation; maximal estimate;
D O I
10.24033/bsmf.2842
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In continuation of a former work by the first author with F. Nier (2009) and of a more recent work by the second author on the torus (2019), we consider the Kramers-Fokker-Planck operator (KFP) with an external electromagnetic field on R-d . We show a maximal type estimate on this operator using a nilpotent approach for vector field polynomial operators and induced representations of a nilpotent graded Lie algebra. This estimate leads to an optimal characterization of the domain of the closure of the (KFP) operator and a criterion for the compactness of the resolvent.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] DISCRETIZATION OF THE FOKKER-PLANCK OPERATOR IN THE HOMOGENEOUS CASE
    LUCQUINDESREUX, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 407 - 411
  • [42] THEORY OF LINEAR FOKKER-PLANCK COLLISION OPERATOR
    SU, CH
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) : 248 - &
  • [43] Quantitative stability estimates for Fokker-Planck equations
    Li, Huaiqian
    Luo, Dejun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 125 - 163
  • [44] Singular perturbation analysis of the Fokker-Planck equation: Kramers underdamped problem
    Barcilon, V
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (02) : 446 - 479
  • [45] Fokker-Planck-Kramers equations of a heavy ion in presence of external fields
    Jimenez-Aquino, J. I.
    Romero-Bastida, M.
    PHYSICAL REVIEW E, 2007, 76 (02):
  • [46] Singular perturbation analysis of the Fokker-Planck equation: Kramers' underdamped problem
    Univ of Chicago, Chicago, United States
    SIAM J Appl Math, 2 (446-479):
  • [47] QUANTUM-MECHANICAL FOKKER-PLANCK AND KRAMERS-CHANDRASEKHAR EQUATION
    BALAZS, NL
    PHYSICA A, 1978, 94 (02): : 181 - 191
  • [48] Maximal estimates for an oscillatory operator
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    Nonlinear Analysis, Theory, Methods and Applications, 2022, 218
  • [49] Maximal estimates for an oscillatory operator
    Chen, Jiecheng
    Fan, Dashan
    Zhao, Fayou
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 218
  • [50] GLOBAL ESTIMATES FOR THE MAXIMAL OPERATOR AND HOMOTOPY OPERATOR
    Xing, Yuming
    Ding, Shusen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 27 - 35