Model order reduction of commensurate linear discrete-time fractional-order systems

被引:12
|
作者
Rydel, Marek [1 ]
Stanislawski, Rafal [1 ]
Latawiec, Krzysztof J. [1 ]
Galek, Marcin [1 ]
机构
[1] Opole Univ Technol, Dept Elect Control & Comp Engn, Opole, Poland
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 01期
关键词
fractional-order system; commensurate-order; controllability and observability Gramians; model order reduction; balanced truncation approximation; COMPUTATION;
D O I
10.1016/j.ifacol.2018.05.090
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approach to model order reduction of linear time-invariant discrete-time commensurate fractional-order state space systems by means of the Balanced Truncation Approximation and Singular Perturbation Approximation methods. Mathematical formulas for computation of controllability and observability Gramians for the fractional-order systems are derived. This enables an extension of classical SVD-originated model order reduction algorithms to model reduction of discrete-time fractional-order state space systems. Simulation experiment illustrates the efficiency of the introduced methodology. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:536 / 541
页数:6
相关论文
共 50 条
  • [21] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Adel Ouannas
    Amina-Aicha Khennaoui
    Okba Zehrour
    Samir Bendoukha
    Giuseppe Grassi
    Viet-Thanh Pham
    [J]. Pramana, 2019, 92
  • [22] Synchronisation of integer-order and fractional-order discrete-time chaotic systems
    Ouannas, Adel
    Khennaoui, Amina-Aicha
    Zehrour, Okba
    Bendoukha, Samir
    Grassi, Giuseppe
    Viet-Thanh Pham
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [23] Synchronization Control of Fractional-Order Discrete-Time Chaotic Systems
    Liao, Xiaozhong
    Gao, Zhe
    Huang, Hong
    [J]. 2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2214 - 2219
  • [24] On Observability of Nonlinear Discrete-Time Fractional-Order Control Systems
    Mozyrska, Dorota
    Bartosiewicz, Zbigniew
    [J]. NEW TRENDS IN NANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS, 2010, : 305 - 312
  • [25] New integer-order approximations of discrete-time non-commensurate fractional-order systems using the cross Gramian
    Marek Rydel
    [J]. Advances in Computational Mathematics, 2019, 45 : 631 - 653
  • [26] Fractional-order derivative approximations in discrete-time control systems
    Machado, J.A.Tenreiro
    [J]. Systems Analysis Modelling Simulation, 1999, 34 (04): : 419 - 434
  • [27] On fractional-order discrete-time systems: Chaos, stabilization and synchronization
    Khennaoui, Amina-Aicha
    Ouannas, Adel
    Bendoukha, Samir
    Grassi, Giuseppe
    Lozi, Rene Pierre
    Viet-Thanh Pham
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 : 150 - 162
  • [28] Perfect Control for Fractional-Order Multivariable Discrete-Time Systems
    Wach, Lukasz
    Hunek, Wojciech P.
    [J]. THEORETICAL DEVELOPMENTS AND APPLICATIONS OF NON-INTEGER ORDER SYSTEMS, 2016, 357 : 233 - 237
  • [29] New integer-order approximations of discrete-time non-commensurate fractional-order systems using the cross Gramian
    Rydel, Marek
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 631 - 653
  • [30] On simplified forms of the fractional-order backward difference and related fractional-order linear discrete-time system description
    Ostalczyk, P.
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2015, 63 (02) : 423 - 433